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Abstract. To successfully model an array of different programing lan-
guages, game semantics uses the detailed interactions between a system
and its environment. To fine-tune such a model to a particular language,
the set of strategies available to the players is limited using various con-
ditions. In many cases these restrictions can be thought as the result
of limiting the information available to the players to elaborate their
strategies.
The aim of this paper is to study two frameworks to represent this par-
tial knowledge explicitly. The first add to games as defined in game
semantics equivalence relations identifying the position that cannot be
distinguished by the players. The resulting structure is related to the
process of restricting the player’s strategies by a Galois connection.
The second framework is based upon a network game representation de-
rived from coloured Petri nets. The games of the first framework are
used to study the dynamics of this network game representation, so it
can also be connected to game semantics. This relation is then used to
give a characterisation of total information games in the network repre-
sentation. A sketch of the basic constructions needed to define a category
of games and strategies using the network representation is given.

1 Introduction

The successful application of the techniques of game semantics to construct
fully abstract models for many different languages is due to the fact that one
can restrict the set of strategies available to a player to those satisfying various
conditions (innocence, bracketing, etc. . . ) to fine-tune the model appropriately.
Most of these restrictions implicitly limits the possible interactions between the
players. Such limitations can be explained in two way. They can be thought as
the result of removing moves in the games: this would leave the players with
fewer options, and thus with fewer strategies. More interestingly, they could be
seen as the result of the players having only limited knowledge of the state of
the game when they decide upon a move to play in that state. In that case,
the players also have fewer options because having less information makes them
unable to distinguish some states of the game. This forces them to make one
choice for each set of indistinguishable states instead of a choice for each state.
This again limits the number of strategies available.
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This paper present two ways to study the effects of limiting the options of
the players explained as limited knowledge. The first one is an adaptation of
the concepts of game theory used to study partial information to the formalism
of game semantics. The second one use information flow to introduce partial
knowledge in games.

2 Information structure of game semantics

2.1 The game semantics framework

We begin with a definition of game which keep only the structure relevant to
study the implicit partial information introduced by limiting the player’s strate-
gies. The result is close to the basic definitions of [?], which are used to construct
a category of games and strategies which models multiplicative linear logic. This
abstracted concept is named “pregame” because it does not include any notion
of payoff or winning strategy. It is also not assumed that there are two players
that play alternately.

We denote the set of sequences (finite of infinite) of elements of a set A by
A∞, the prefix ordering of sequences by v, the empty sequence is denoted by ε
and the length of a finite sequence s by |s|. We use s, t, . . . for sequences, and
a, b, c, . . . for moves, so when we write sa ∈ A∞, s ∈ A∞ and a ∈ A are implicit.

Throughout this paper, P will denote a non-empty set of (possibly more than
two) players. A pregame is formalised as the set of its possible histories or plays,
each move being assigned to a player:

Definition 1. A pregame P = (M,H,N) is a set M of moves together with a
prefix-closed subset of histories H ⊆ M∞ containing ε and a function N : M →
P that assigns each move to a player.

This notion of pregame provide enough structure to define strategies:

Definition 2. A strategy for the player p ∈ P in P is a subset σ ⊆ H such that

1. ε ∈ σ,
2. if sa ∈ σ, then N(a) = p.

The second condition of the above definition of strategy for p require that σ
tells p how to choose moves as follows: if sa ∈ σ, then p chooses a on the
position reached after the history s. Note is it not assumed that strategies are
deterministic; a strategy σ is deterministic if sa, sb ∈ σ ⇒ a = b.

In game semantics, in order to get domains when we order strategies by
inclusion, it is also assumed that every strategy σ is prefix-closed : ta v s ∈ σ
and N(a) = p implies that ta ∈ σ. In that case, if σ tells p how to decide at
some point in an history s, then σ also gives moves to p for all previous points
of s where p can move.

One can add other restrictions to strategies, such as being history-free:

sab ∈ σ, ta ∈ H ⇒ tab ∈ σ.
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In “Hyland-Ong”-style game semantics (see [?] or chapter 3 of [?]), the set of
histories H is the set of histories is defined using an enabling relation ` between
moves. It is assumed that if a ` b, then N(a) 6= N(b), and that for all a with
no enablers, N(a) = O. The use of the enabling relation it to put restrictions
on which moves can be made after a specific sequence of moves and specify
which moves are considered as initial moves. Each occurrence of a non-initial
move in an history is also equipped with a justification pointer which points to
a previous occurrence of a move that enable it. Assuming P = {O,P}, where O
(“Opponent”) stands for the environment and P (“Player”) for the system and
that H contains only histories where the players alternates with O beginning,
one can define inductively the P-view view(s) of an history s:

1. V(sa) = a if a is a an initial O-move,
2. V(satb) = V(s)ab if N(b) = O and b points to a,
3. V(sa) = V(s)a if N(a) = P.

It is required that the justification pointers of non-initial occurrences of P-moves
of any s ∈ H point to a move of V(s); this condition is know as P-visibility.

In such a game, a strategy σ for P is said to be innocent if sab ∈ σ and
t ∈ σ, ta ∈ H,V(s) = V(t), then tab ∈ σ. Note there is a unique way to add
a justification pointer from b in tab such that V(tab) = V(sab), so there is no
ambiguity in the above condition.

The enabling relation used to define the set of histories also uses the extra
moves labels ? and ! to mark moves that are “questions” and “answers”, with
extra conditions on ` that requires that only questions can be initial moves or
enablers. A well-bracketed strategy σ for P is such that if sab ∈ σ and b is an
answer, then the justification pointer of b points to the last occurrence of in the
P-view a question by O which does not justify any answer (called the pending
question).

2.2 Information structures

The tool used to study partial information in game theory is usually called the
extensive form of a game. Basically, this represent the game as a tree of positions
where the edges represent moves, plus a collection of equivalence relations Ip, one
for each player p, which tell which positions are indistinguishable by p when p
makes decisions. The equivalence classes of these relations are called information
sets. Using extensive forms, one can represent concurrent moves and partial
information by choosing appropriate information sets.

While a pregame can trivially be seen as a tree, there is a small difference
between the underlying tree of an extensive form and a pregame: moves in a
pregame do not correspond to the edges of its associated tree. In pregames, moves
are actions that can be performed in many point of the game, while in extensive
forms, the same action done at different points of the game will be considered as
different moves. This does not cause any problems to define information sets in
the formalism of pregames; in fact, the definition of information set is simplified.
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For any s ∈ H, let nextp(s) = {a ∈ M |sa ∈ H ∧ N(a) = p} be the set of
moves available to p after s.

Definition 3. An information structure I for a pregame P = (M,H,N) is a
set of partial equivalence relations Ip on H, indexed by p ∈ P , such that

sIpt ⇒ nextp(s) = nextp(t)

and all s ∈ H with nextp(s) = ∅ are in the same Ip-equivalence class.

The condition on Ip is necessary because p ∈ P can always distinguish positions
from which p cannot make the same moves. Note that we do not ask for the
reciprocal condition to hold because it is possible to have positions where p have
the same moves but where p have enough information to be able to distinguish
them. It is also required that all positions where p does not have moves are
identified by Ip. We call the equivalence classes of Ip information sets as in the
case of extensive forms; the Ip information set containing an history s is denoted
Ip(s).

The concept of strategy must be adapted to take into account the potentially
limited knowledge of the players when they make their decisions:

Definition 4. A strategy σ for p ∈ P is compatible with I if sIpt and sa ∈ σ
imply that ta ∈ σ.

This condition forces strategies for p to have the same set of choices of moves at
every pair of positions that p cannot distinguish.

2.3 Allowed strategies and information structures

We can now connect the information structure view of partial knowledge to the
way information is usually restricted in game semantics by allowing a player to
use only a particular subset of all the possible strategies.

Let a strategy collection Σ be a function which gives for each p ∈ P a set Σp

of strategies for p. We order strategy collections by component-wise inclusion.
Intuitively, the more choices the players have, the larger a strategy collection is
and the more information they have.

We can also define a partial order on information structures for a pregame
P. Let I, J be two information structures on P. We put I ≤ J if for all p ∈ P
and s ∈ H, Jp(s) ⊆ Ip(s). Because fewer histories are identified, if I ≤ J
the players have the same or less information if the information structure is
J than if it is I. To illustrate the relationship between information structures
and strategy collections, consider the simple pregame in figure 1 with players
P = {O,P}, with two different information structures. To simplify, we consider
in this example only deterministic prefix-closed strategies.

In the left case, the possible strategies for P are the following:

{ε}, {ε, ac, bc}, {ε, ad, bd}.
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Fig. 1. Two information structures on the same pregame. Bold edges are O-moves,
normal edges are P-moves, and IO and IP information sets are also respectively drawn
with bold and normal lines. The vertices not in any drawn information set for a player
are assumed to be in the same one.

The player P has more possibilities in the right case, adding to the above list
the two strategies

{ε, ac, bd}, {ε, ad, bd}.

We say a strategy collection Σ is compatible with an information structure I
if every strategy in Σ is compatible with I. If a strategy collection is compatible
an information structure I, then any smaller strategy collection will also be
compatible with I. Let G(I) be the strategy collection of all strategies compatible
with the information structure I.

Similarly, given a strategy collection Σ for a pregame, there are many infor-
mation structures that are compatible with all the strategies of Σ, the largest
one, denoted by F (Σ) being defined by

sF (Σ)pt ⇐⇒ ∀σ ∈ Σp.sa ∈ σ ↔ tb ∈ σ.

We can summarise the relationship between information structures and strat-
egy collections by the following:

Proposition 1. Let P be a pregame. There is a Galois connection between the
partial order of information structures and the partial order of strategy collec-
tions.

Proof. Both F and G are monotone. If Σ ≤ Φ are two strategy collections, then
since σ ∈ Σp ⇒ σ ∈ Φ we have that ∀σ ∈ Φ.sa ∈ σ ⇐⇒ ta ∈ σ implies that
∀σ ∈ Σ.sa ∈ σ ⇐⇒ ta ∈ σ, and therefore F (Σ) ≤ F (Φ). If I ≤ J are two
information structures, then sJpt ⇒ sIpt. So if σ ∈ G(I), then

sIpt ⇒ (sa ∈ σ ⇐⇒ ta ∈ σ)

and we may conclude that σ ∈ G(J).



6

We now show that

F (Σ) ≤ I ⇐⇒ Σ ≤ G(I).

Assuming F (Σ) ≤ I, let σ ∈ Σp. If sIpt and sa ∈ σ, then by hypothesis we also
have sF (Σ)pt, and therefore ta ∈ σ. We thus have that σ ∈ G(I).

If instead we assume that Σ ≤ G(I), suppose sIpt and let σ ∈ Σp. By
hypothesis, σ is compatible with I, so we must have sa ∈ σ ⇐⇒ ta ∈ σ. As
this is the definition of sF (Σ)pt, we have shown that F (Σ) ≤ I.

Note that the proposition is true if we consider a specific player p: the relation
between sets of strategies for p and the possible relations Ip, both ordered in
the obvious way, is still a Galois connection if all else is remain fixed. This is
illustrated using the pregame of figure 2, where all the possible strategies for P
are history-free.

Fig. 2. An information structure for which all possible strategies for P are history free.

Proposition 1 gives us a way to characterise history-free strategies for P in
terms of partial information: an history-free information structure for P is such
that saIPta for all histories sa, ta with nextP(sa) = nextP(sb) 6= ∅. This force P
to know only the last move and nothing of the rest of the history when making
a decision.

A more important consequence of the last result is to allow to define when
a particular restriction on strategies induce a natural limitation of the players
information. If Σ ≤ Φ, F (Σ) = F (Φ) then the restriction of the strategy col-
lection Φ to the strategy collection Σ cannot be considered as arising from a
change of information structure. In that case, we have no choice but to consider
the restriction as due to an implicit restriction of the pregame to a subset of H.
An example of this situation is the restriction of the collection of all strategies
to the collection of deterministic strategies or to well-bracketed strategies.



7

3 Representing games using information flow

The main drawback of the representation of games with partial information as
pregames with information structures is that independent or concurrent moves
must artificially appear sequentially in an history, using the information struc-
ture to encode the fact that when the second move is made, nothing is known
about the result of the first move.

An alternate way to represent games which does not have this drawback is
to use graphs representing how information is exchanged among the players.
This approach as been used in [?] to produce an algorithm to find equilibrium
strategies using symmetries of the games that could not be captured by an
extensive form representation.

Note unfolded Petri nets are used in [?] to define “Petri games” used to
interpret cut-free multiplicative linear logic proofs, but the interaction systems
defined below use Petri nets to define games in a different way.

3.1 Interaction systems

An interaction system represent information flow among players using an evolu-
tion dynamics similar to the dynamics an coloured Petri nets where events are
assigned to players (for a description of concept of coloured Petri net, one can
see [?]). We begin by introducing the basic concepts of Petri net theory.

An elementary net X = (V,E, In,Out, Γ0) is a set of places V and a set of
events E, disjoint from V , with two functions specifying the input and output
sets In(a) and Out(a) of an event a ∈ E, plus a subset Γ0 ⊆ V called the initial
marking. Events are thought as taking information in their input places and then
putting information in their output places.

A set of places Γ ⊆ X is called a marking of the elementary net; a marking
is a set of places containing information at a given point of the evolution of the
system. Given a marking Γ and an event a, we define Γ a = (Γ \ In(a))∪Out(a);
this operation is allowed if an only if In(a) ⊆ Γ and Out(a) ∩ (Γ \ In(a)) = ∅.
We denote next(Γ ) the set of e ∈ E such that In(a) ⊆ Γ . Given a sequence
s = a1, . . . , an of events, we denote by Γ s the composition

(· · · (Γ a
1 ) · · ·)an

provided all the involved operation are defined. If Γ s
0 is defined, we call s an

history, and denote the set of histories by H. A reachable marking is a marking
of the form Γ s

0 .
An elementary net X is safe if for all reachable marking Γ and a ∈ next(Γ ),

Γ a is defined.
A causality graph is an elementary net X such that

1. All events are part of some history
2. All places are elements of some reachable marking
3. X is safe.
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The first two condition make sure there is no unused places or unused events in
the system. The safeness condition is necessary to be able to define the dynamics
of interaction systems below.

Let a S family of sets indexed by elements of I. It is convenient to consider
their Cartesian product ×iS(i) to be the set of functions u : I →

∑
i S(i) such

that u(i) ∈ S(i) (where + is the disjoint union operation). Given any J ⊆ I, we
put S(J) = ×j∈JS(j).

Definition 5. Let P be a set of players. An interaction system X = (X, S, F, N, u0)
is a causality graph X with each event a assigned to a player N(a), for each place
x a set of states S(x), for each event a function

Fe : S(In(a)) → S(Out(a)),

and finally an element u0 ∈ S(Γ0).

When s is an history, an element u ∈ S(Γ s
0 ) is called a state on Γ s . The dynamics

on markings induce a dynamics on states, using the functions Fa associated to
events to modify the data stored in the input places of a. Given a state u on a
reachable marking Γ and a ∈ next(Γ ), we define a new state ua on Γ a by

ua(x) =
{

ua(x) =
[
Fa(u|In(a))

]
(x) if x ∈ Out(a),

u(x) if x 6∈ Out(a)

As it was done for markings, the definition of ua can be extended to sequences
of events.

Trace theory would provide another tool to describe the evolution of inter-
action systems. Since traces identify histories in which independent moves are
permuted, they would give a better account of the evolution, one that does
not force an unnatural sequentiality on concurrent moves in the system. The
connection between elementary nets and trace structures is well known (for a
description, see for example [?]), and it is not hard to adapt it to interaction
systems. Nevertheless, since the goal of this paper is to study partial information
and information flow in game semantics, using histories to describe the evolution
has the advantage of a direct connection with pregames.

3.2 Strategies and information in interaction systems

In an interaction system, players interacts by sending information to each other,
and make move by applying function to the information they receive. A player
p can only see the part of its state which is on the input the p-moves when p
makes a decision. To define a notion of strategy for p in an interaction system,
states that p cannot be distinguish need to be identified.

Let p ∈ P and Vp = {x ∈ V |∃a ∈ E.x ∈ In(a) ∧N(a) = p} be the set of all
the places that p can see.

Definition 6. Two reachable markings Γ,∆ of X are indistinguishable by p if

nextp(Γ ) = nextp(∆).
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We denote this relation by Γ ≈p ∆.
Two states u and v on Γ and ∆ are indistinguishable by p if

Γ ≈p ∆ and u|Vp = v|Vp .

We denote this relation by u ∼p v.

The two relation ≈p and ∼p are partial equivalence relations defined only where
p have moves. We denote the equivalence classes of a reachable marking Γ and
a state u respectively by [Γ ]p and [u]p. Using these relations, the concept of
strategy is defined as follows:

Definition 7. Let U be the set of reachable states where p has moves. A strategy
for p in an interaction system X is a partial function σ taking [us

0]p ∈ U/ ∼p to
a subset of nextp(Γ s

0 ).

At any given point, p is allowed to “look” at what is on the input of the moves
and choose a set of moves σ([us

0]p). A deterministic strategy is one that alway
pick singletons.

Note that the safeness condition of causality graphs have an effect on the con-
cept of strategies. If many tokens were allowed to be in the same place, strategies
would also have to specify to which one one must apply the function associated
to the chosen. Safeness simplifies the concept of strategy for interaction systems
and make it easier to connect it to strategies for pregame.

While it is not natural to define the concept of prefix closure in the setting
of interaction systems because the order of concurrent moves should not be
important, we can still use the histories to define the concept in order to be
able to connect it to pregames prefix-closed strategies. A strategy σ for p ∈ P
is prefix-closed if each time it is defined at [us

0]p and ta v s with N(a) = p, it is
also defined at [ut

0]p and a ∈ σ([ut
0]p).

3.3 Interaction systems and information structures

Given interaction system X = (X, S, F, N, u0), the ∼p equivalence relations of
the last section allows us to define easily an associated pregame P = (M,H,N)
and an information structure. This is done as follows: M is the set of events E
of X with the same associated players and H is the set of histories of X . The
information structure I is given by taking Ip =∼p.

Furthermore, a strategy σ for p in X can be converted into a strategy σ′ for
p in P:

σ′ = {sa|s ∈ H,σ is defined at [us
0]p and a ∈ σ([us

0]p)}

If σ is prefix-closed (resp. deterministic), then σ′ is prefix-closed (resp. deter-
ministic).

Consider for example the interaction system of figure 3. The set of states used
are B = {T,F} and Q = {q}. The functions Q,T,F are the constant function
returning respectively q, t, f . All strategy for P correspond to innocent strategies
of the associated pregame, if we add justifications pointers appropriately, since
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decisions are made using only the reachable states that can be seen by P. These
correspond with the P-views in the game (Bool ⇒ Bool) ⇒ Bool.

Note that in the usual definition of Hyland-Ong games, one can have multiple
game threads because nothing forbids to play a second initial move after a first
one has been played. To recover this behaviour in the last example, one can play
countably many copies of the interaction system to get a new one. If justification
pointers added to the histories always points to move in the same copy, the
strategies for P in the resulting game will automatically be well-threaded : the
justification pointers for a P-move are pointing to a move of V(sa) (see for
example chapter 3 of [?] for a more details about well-threaded strategies).

GFED@ABCt, f

GFED@ABCt, f

T,F
|||

>>|||

GFED@ABCt, f

T,F
|||

>>|||

?>=<89:;q

T,F

OO

?>=<89:;q

Q
CCC

aaCCC

T,F

OO

?>=<89:;q

Q
CCC

aaCCC

T,F

OO

?>=<89:;/.-,()*+∗
Q

OO

Fig. 3. An interaction system for innocent strategies in the game (Bool ⇒ Bool) ⇒
Bool. Places and set of events with same input and output sets are represented re-
spectively as circles and boxes. A place x contains the various values of S(x), and a
box the functions Fa for each event a in it. Boxes drawn with single lines and double
lines are respectively assigned to P and O.
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3.4 Total information

A total information pregame P with information structure I is such that all
equivalence classes Ip(s) with nextp(s) 6= ∅ are singletons. An interaction system
is of total information if its associated pregame and information structure is of
total information.

An interesting problem is to characterise directly when an information system
is of total information. There are intuitively two type of situations that prevent
a player to know all about the past history of the game; they are illustrated by
left and right nets of figure 4. In the left net a and b are two independent moves,
so when P is about to play a, P has no information about whether b as occurred
or not, and thus P cannot know everything about the state at that point. In
the right net, take S(x) = S(Y ) = {∗} and Fa, Fb are the function sending ∗
to ∗. In that case, P cannot infer from the state ua

0 = ub
0 = ∗ on {y} whether

a or b occurred. In general, all players p must be able to tell the last move and
the previous state from the input state of p’s moves. This is a local condition
similar to injectivity. Before stating the main result of this section, we need to use

?>=<89:;a ?>=<89:;b

?>=<89:;/.-,()*+∗
Fa

OO

?>=<89:;/.-,()*+∗
Fa

OO

∗

?>=<89:;∗
Fc

OO

?>=<89:;/.-,()*+∗
Fa

>>

Fb

``

Fig. 4. Interactions systems where the global and local conditions fails

the underlying causality graph to formalise the intuitive independence relation
between moves.

Definition 8. Let X = (X, S, F, N, u0) be an interaction system. The moves
a, b ∈ E, a 6= b are independent if there is a reachable marking Γ with In(a), In(b) ⊆
Γ and In(a) ∩ In(b) = ∅.

We use the notation a‖b to say that a and b are independent. We can now state
the main result of this section:

Theorem 1. An interaction system is of total information if and only if

1. (Global condition) There is no pair of independent moves,
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2. (Local condition) If us
0 ∼p ut

0, nextp(us
0) = nextp(ut

0) 6= ∅ and s = ε or t = ε,
then s = t = ε. If usa

0 ∼p utb
0 , nextp(usa

0 ) = nextp(utb
0 ) 6= ∅ and a 6 ‖b, then

a = b and us
0 ∼N(a) ut

0.

Proof. An interaction system is of total information if and only if us
0 ∼p ut

0 and
nextp(s) = nextp(t) 6= ∅ implies s = t.

To show that the global and local conditions suffice, we proceed by induction
on |s|. If s = ε, then the local condition implies that t = ε.

If s = s′a and us′a
0 ∼p ut

0, then the local condition forces t 6= ε. So we must
have us′a

0 ∼p ut′a
0 for some decomposition t = t′b. By the global condition, a 6 ‖b,

so the local condition implies that a = b and us′

0 ∼N(a) ut′

0 . Since nextN(a) 6= ∅,
by induction hypothesis we have that s′ = t′ and thus s = t.

We now show the necessity of the global and local conditions. Assume that
the global condition does not hold, i.e. that there is a pair of distinct moves a, b
with a‖b. By definition, there is an history s such that usab

0 = usba
0 . If there is a

p ∈ P with nextp(sab) = nextp(sba) 6= ∅ and the interaction system is of total
information, we must conclude that sa = sb, which is a contradiction.

If it is the local condition which does not hold, there must be p ∈ P and
histories sa, tb with nextp(usa

0 ) = nextp(utb
0 ) 6= ∅, usa

0 ∼p utb
0 and a 6 ‖b, but also

such that a 6= b or us
0 6∼N(a) ut

0. If the interaction system is of total information,
then usa

0 ∼p utb
0 implies that sa = tb, which contradicts a 6= b or us

0 ∼N(a) ut
0.

Again, the interaction system cannot be of total information, and it is thus the
case as soon as either the local or the global condition are false.

4 Toward a category of interaction systems and strategies

This last section is a sketch of the basic constructions needed for game semantics
done using interaction systems.

4.1 Rules

In interaction systems, nothing specifies who is to play after a sequence of move
has occurred. While this is not problematic in the previous sections, in the game
semantics constructions it is necessary to have this resolved. We use the following
concept:

Definition 9. Let X = (X, S, F, N, u0) be an interaction system. A rule R for
X is a function taking each history to a player p ∈ P .

For example, in the rule used the most often in game semantics, both players
can have moves in a given position, but there is usually a rule saying the player
must play alternately, with the “environment” player beginning.

This formulation induces a natural question about the standard hypothesis
of game semantics: why is working with two players - and not more - playing
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alternately so important in game semantics? Relaxing this rule leads to associa-
tivity problems (as mentioned with respect to Blass games in [?]). Generalisa-
tions to more than two players have not been used, even if such a generalisation
should intuitively be related to interactions between multiple agents described
by a concurrent language (for example, a game semantics for such a language
with using the interactions of two players is given in [?]). In that case, there
are two problems: first, there is no natural replacement for the basic two player
game operation of inverting the players roles, and second, there is no natural
generalisation of the alternation rule.

4.2 Operation on interaction systems with rules

We now follow the lines of the usual game semantics construction of a symmetric
monoidal category of game and strategies. At this point, we need to take P =
{O,P}. We also only consider interaction systems equipped with rules R of the
type used in game semantics: O starts and players alternate afterward. We abuse
the notation and will denote all these rules by R, no matter which interaction
system they are associated to.

Let X = (X, SX ,MX , NX , u0),Y = (Y, SY , NY , v0) be two interaction sys-
tems and J,K be their respective set of reachable markings. We define a new
causality graph X � Y by V (X � Y ) = V (X)× V (Y ),

E(X � Y ) = (E(X)×K) + (J × E(Y )),

and finally
In((a, Γ )) = In(a)× Γ

and similarly for Out(aΓ ) and for events of the form (Φ, b). Using the data defin-
ing X and Y, we define a new interaction system X �Y = (X �Y, S,M,N, w0):

– S((x, y)) = SX(x) × SY (y), i.e. states in the new interaction systems are
pairs of states from each system,

– for (a, Γ ) ∈ E(X), we take M((a, Γ )) to be the function that for each y ∈ Γ
acts on the part of the state on In(a)×{y} as MX(a)× IdS(y), and similarly
for events of the form (Φ, b),

– N((a, Γ )) = NX(a), and similarly for events of the form (Φ, b), i.e. each
move stay associated to the same player,

– For each x and y in the respective initial markings of X and Y , w0(x, y) =
(u0(x), v0(y)).

Given an interaction system X , let X|R be the result of removing all moves
a from X that are inconsistent with R in the sense that there are histories s for
which a ∈ nextp(s) but R(s) 6= p.

The new interaction system X ⊗Y is defined to be (X �Y)|R. The operation
X ( Y can be defined to be (X⊥ ⊗ Y)|R, where X⊥ is X with inverted player
roles.

Taking the above definitions as a starting point, one face a problem when
defining identity strategies and composition. The core of this problem is that in
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both constructions P must know what the last move is and in which component
it was played. Therefore, in order to define these constructions, one can restrict
the kind of interaction systems considered to those where P can always determine
the last move:

usa
0 ∼P utb

0 ⇒ a = b.

5 Conclusion

We present in this paper to possible frameworks to study how partial information
can arise by limiting the player’s strategies in a game. Interesting developpements
are possible in both cases.

The framework of pregames and information structures can be used to define
the basic constructions of game semantics, taking the information relations I of
the tensor of two pregames P,Q with information structures J,K to be related
by

sIpt ⇐⇒ sPJptP ∧ sQKptQ,

where sP is the sequence obtained by keeping only the moves of s that are in
P. Some of the various lemmas that say that a certain type of strategies is
closed under composition can be reformulated by saying, in the notation used
above, the composition of strategies σ, τ respectively compatible with J and K
are compatible with I. This is the case for innocent strategies for example. It is
reasonable to think there is a general result of this sort that can be proved using
information structures.

The preliminary theory of interaction systems presented here provide a new
way to look at the interactions between the system and its environment, and
a detailed study of its many possible connections to game semantics is still in
progress.


