
QPL/DCM 2008

Game semantics for quantum data

Yannick Delbecquea,1,2

a School of computer science
McGill University
Montreal, Canada

Abstract

This paper presents a game semantics for a simply-typed λ-calculus with qbits constants and associated quantum opera-
tions. The resulting language is expressive enough to encode any quantum circuit. The language uses a notion of extended
variable, similar to that seen in functional languages with pattern matching, but adapted to the needs of dealing with tensor
products. The game semantics is constructed from classical game semantics using quantum interventions as questions and
measurements results as answers. A soundness result for the semantics is given.

Keywords: Game semantics, quantum programing languages, quantum games.

1 Introduction

An important problem in the development of higher-order quantum programming lan-
guages is to find an appropriate structure to define a denotational semantics. Previous
works on quantum λ-calculi were based on the idea that quantum data should be used lin-
early since it cannot be duplicated. This idea was implemented by adding a quantum tensor
type operation and typing rules to forbid duplication. This approach may seem natural,
but the often counterintuitive behavior of classical-quantum interactions makes difficult the
construction of the appropriate syntax and typing rules. Since no denotational semantics
could be found for a complete quantum λ-calculus, we still lack a soundness result for a
complete language that would validates the choices made. For example, there was no de-
notational semantics given in the first presentations of the quantum λ-calculus developed
by Selinger and Valiron [14,16]. They proposed in [15] a denotational semantics for the
linear part of the quantum λ-calculus; their interpretation is in the category of completely
positive maps on finite dimensional Hilbert spaces. Working with this restricted language
allows them to avoid the problem of finding a structure which can model completely the
possible interactions between quantum data and classical data in higher order quantum
programming languages.

1 This research was supported by a grant from NSERC (Canada)
2 Email: yannick@delbecque.org

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:yannick@delbecque.org

Delbecque

In this paper we introduce a new λ-calculus equipped with extra structure to allow it to
represent manipulation of quantum data. The proposed language was build with the goal of
proving soundness using a denotational semantics where quantum states and operations are
represented represented as strategies which makes someone choose the actions according
to the laws of quantum mechanics. Our proposed model is built upon ideas from game
semantics augmented with quantum strategies which describe the behavior of quantum
states and quantum operations.

The language we define in this paper introduces new features and ideas. Perhaps one of
the most important one is the fact that we forbid abstraction over part of a tensor of unknown
qbits of the form x ⊗ y. This is motivated by the fact that abstraction should intuitively be
interpreted using a correspondence between programs of type qbit⊗qbit(qbit⊗qbit with
those of type qbit (

(
qbit(qbit ⊗ qbit

)
. This seems problematic, since this should be a

correspondence between functions with two input qbits, which may be in some entangled
state, with functions using only separated qbits. A consequence of this is that there is
no tensor type operation in the proposed language, only types qbit⊗n for n qbits. We use
extended variables, which are tensor of variables, to keep track of possible entanglements
between qbit variables. Finally, the model forces us to distinguish between tensor of known
and unknown qbits, leading to three different typing rules for the tensor operations.

2 Simply typed λ-calculus with quantum data

2.1 Syntax

We now introduce a λ-calculus with quantum data language (QDL). The syntax of QDL
is that of a classical simply typed λ-calculus with pairing and conditionals, with extra
constructs that give the language enough expressiveness to encode usual manipulations
of quantum data as can be described with the low level formalism of quantum circuits.

We first need to introduce a syntax which allows one to refer to specific qbits in a tensor
product. An extended variable is an expression of the form x1 ⊗ · · · ⊗ xn, where the xi are
variables such that xi , x j if i , j. Two extended variables x1 ⊗ · · · ⊗ xn and y1 ⊗ · · · ⊗ ym

are disjoint if xi , y j for all i, j. Two such extended variables can be joined to form a new
extended variable x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym. Note that when we use x1 ⊗ · · · ⊗ xn to refer
to an arbitrary extended variable, the case n = 1 is also possible. To simplify the notation,
we use x instead of x1 ⊗ · · · ⊗ xn, leaving the number n implicit.

The terms of QDL are defined recursively as follows:

M,N, PFx | ∗ | 0 | 1 | ρ | 〈M,N〉 | fst M | snd M |
MN | λx.M | if M then N else P |
let b, x = measi M in N | meas Q | U M,

where b, x, y are extended variables as defined above, i > 0 is a natural number, ρ can be any
density matrix andU is a superoperator corresponding to a unitary transformation U. Most
of the syntax consist of standard λ-calculus operations. The termU M is the operation that
correspond to applying a unitary transformation to the state described by the term M. The
measurement operation syntax let b, x = measi M in N means that the qbit i of the term M
is measured and thereafter the measurement result is accessible in N as b and the resulting
state is accessible as x. Note that the variable b and x are bound in N. To measure a single

2

Delbecque

Table 1
QDL typing rules.

Γ,∆, x : A ` x : A Γ,∆ ` ∗ : > Γ,∆ ` 0: bool Γ,∆ ` 1: bool

Γ,∆, x : A ` M : B
Γ,∆ ` λx.M : A⇒ B

Γ,∆1 ` M : A⇒ B Γ,∆2 ` N : A
Γ,∆1,∆2 ` MN : B

Γ,∆1 ` M1 : A1 Γ,∆2 ` M2 : A2

Γ,∆1,∆2 ` 〈M1,M2〉 : A1 × A2

Γ,∆ ` M : A × B
Γ,∆ ` fst M : A

Γ,∆ ` M : A × B
Γ,∆ ` snd M : A

Γ,∆1 ` P : bool Γ,∆2 ` M : A Γ,∆2 ` N : A
Γ,∆1,∆2 ` if P then M else N : A Γ,∆ ` ρ : qbit⊗n

Γ,∆1 ` Q : qbit⊗(n+1) Γ,∆2, b : bool, x : qbitn ` M : A
Γ,∆1,∆2 ` let b, x = measi Q in M : A

Γ,∆ ` M : qbit⊗n

Γ,∆ ` U M : qbit⊗n

Γ,∆ ` Q : qbit⊗n

Γ,∆ ` meas Q : bool

Γ,∆1 ` M1 : qbit⊗n Γ,∆2 ` M2 : qbit⊗m

Γ,∆1,∆2 ` M1 ⊗ M2 : qbit⊗n ⊗ qbit⊗m FV(Mi) ∩ |∆i | = ∅

Γ,∆1, x1 : qbit⊗n ` M1 : qbit⊗n Γ2,∆2, x2 : qbit⊗m ` M2 : qbit⊗m

Γ,∆1,∆2, x1 ⊗ x2 : qbit⊗n ⊗ qbit⊗m ` M1 ⊗ M2 : qbit⊗n ⊗ qbit⊗m FV(Mi) \ |∆i | = {xi}

Γ,∆1, x : qbit⊗n ` M1 : qbit⊗n Γ,∆2 ` M2 : qbit⊗m

Γ,∆1,∆2, x : qbit⊗n ` M1 ⊗ M2 : qbit⊗n ⊗ qbit⊗m
FV(M1) \ |∆1 | = {x1}

FV(M2) ∩ |∆2 | = ∅

qbit, we use instead the simpler syntax meas Q. The set of free variables in M is denoted
FV(M).

The types of QDL are the following:

A, BF bool | > | qbit⊗n | A × B | A⇒ B.

where n > 0. The type bool is the type of boolean constants, A × B and A ⇒ B are
respectively the types of pairs and functions. The type qbit⊗n is the type of quantum states
on n qbits. The notation qbit⊗n stands implicitly for the product qbit⊗ · · · ⊗qbit; we use the
notation qbit⊗n ⊗ qbit⊗m to denote qbit⊗(n+m), although there is no ⊗ type operation.

The typing rules of QDL are given in table 1. We assume that contexts Γ contain no
qbit variables and contexts ∆k contain only qbits variables. This convention will be used
throughout this paper. Rules involving classical operations correspond are direct adapta-
tion of the standard typing rules of a typed λ-calculus. The rules for quantum constants,
quantum measurements and unitary operations are straightforward. The three tensor rules
allow one to take two terms of type qbit⊗n and qbit⊗m and create a term of type qbit⊗(n+m).
The distinction between the three cases is due to the fact that known or unknown qbits must
be dealt with differently. If Γ,∆ ` M : qbit⊗n, M is a known qbit when it has no dependency
on some quantum state variable in ∆, i.e. if FV(M) ∩ |∆| = ∅. If instead FV(M) ∩ |∆|
contains only an extended variable x, then the quantum state represented by M depends on
the value of the quantum variable x and is thus unknown. The typing rules do not allow an
unknown quantum state to depend upon more than one other quantum state. Note also that
the term x ⊗ x is not well-typed because it is no a valid extended variable. We also have to
ban duplicating terms like λx. x ⊗ x, so we require that qbit variables are used linearly.

Example 2.1 Quantum teleportation can be implemented in the quan-
tum data λ-calculus. Consider the following QDL teleportation term:

3

Delbecque

Table 2
QDL probabilistic reduction.

V ⇓ V
M ⇓p λx.M′ N ⇓q V

MN ⇓pq M[V/x]
M1 ⇓

p V1 M2 ⇓
q V2

〈M1,M2〉 ⇓
pq 〈V1,V2〉

M ⇓p 〈V1,V2〉

fst M ⇓p V1

M ⇓p 〈V1,V2〉

snd M ⇓p V2

P ⇓p 0 M ⇓q V
if P then M else N ⇓pq V

P ⇓p 1 N ⇓q V
if P then M else N ⇓pq V

Q ⇓q ρ M
[
b/m, x/ 1

pm
[m]ρ[m]

]
⇓r V

let b, x = measi Q in M ⇓pmqr V
pm = tr

(
[m]iρ

)
, m = 0, 1

Q ⇓q ρ

meas Q ⇓pm m
pm = tr

(
[m]iρ

)
, m = 0, 1

M1 ⇓
p V1 M2 ⇓

q V2

M1 ⊗ M2 ⇓
pq V1 ⊗ V2

M ⇓p ρ

U M ⇓p U(ρ)

teleport :
λx. let bx, y ⊗ z = meas1cnot12 ((H x) ⊗ [β00]) in

let by, z′ = meas1 y ⊗ z in
if bx then

if by thenU00 z′ elseU01 z′

else
if by thenU10 z′ elseU11 z′

where the unitary superoperators Ubxby are the usual correction unitary operations of the
teleportation protocol and [β00] is the Bell state (|00〉 + |11〉)/

√
2 .

Using the type inference rules, we can derive that ` teleport : qbit⇒ qbit.

Any quantum circuit can be implemented as a QDL term in a similar manner. The input
qbits are represented as a qbit variable x which is tensored with ancilla qbits if necessary.
The unitary transformation can then be applied to the resulting term. Finally, measurements
operations are used to extract the result.

The operational semantics of the λ-calculus with quantum data is given as a big-step
probabilistic reduction relation M ⇓p V between terms and values. Values are the terms
defined recursively by

V,W F 0 | 1 | ∗ | ρ | λx.M | 〈V,W〉 | V ⊗W.

The reduction relation is defined by the rules given in table 2. The operational semantics
of classical operations is defined using standard reduction rules. The quantum operations
reduction rules makes reduction of quantum terms follow the rules of quantum mechanics.

Example 2.2 The term teleport ρ reduces with probability 1 to ρ.

3 Denotational semantics

3.1 Probabilistic game semantics

The game semantics presented in this paper is constructed using the definitions of proba-
bilistic games semantics introduced by Danos and Harmer [3]. We give here an overview

4

Delbecque

of the basic definitions and facts of probabilistic game semantics.

Definition 3.1 An arena A is a triple (MA, λA, `A) where MA is a set of moves, the function
λA : MA → {O,P} × {Q,A} × {I,N} is a labeling which assigns moves to the two players
Opponent and Player, and tells us which moves are Questions and which are Answers, and
whether they are Initial or Noninitial moves, and finally `A⊆ MA × MA is a relation, called
the enabling relation, such that

(A1) if a `A b, then λOP
A (a) , λOP

A (b), λQA
A (a) , λQA

A (b),

(A2) if λIN
A (a) = I, then λA(a) = OQI,

(A3) if a ` b and λQA
A (b) = A then λQA

A (a) = Q,

where the functions λOP
A , λQA

A and λin
A are λA composed with the projections on the sets

{O,P}, {Q,A} and {I,N}.

We use the convention that MX
A , where X is some list of superscripts taken from the set

of move labels {O,P,Q,A, I,N} denote the set of moves labeled with these labels. Moves
in an arena are thus of various types, and the constraints on the enabling relation `A limits
the possible interactions in the arena by limiting which moves can be made at a certain
point given the past interactions. The condition (A1) forces that only Player moves to
enable Opponent moves and vice versa, (A2) asks for all initial moves to be questions by
Opponent and finally (A3) says that answers can only be enabled by questions.

A play in A is a sequence of moves s ∈ M∗A. This does not take into account the enabling
relation; we define a justified play to be a play where each occurrence of a non-initial move
b has a pointer to a previous occurrence of a move a with a `A b. We finally need to enforce
alternation of the two players. A legal play is a justified play where Opponent and Player
alternate with; we denote the set of legal plays in A by LA. Note that because all initial
moves are Opponent moves, Opponent is always making the first move. The sets of odd
and even length legal plays are respectively denoted by Lodd

A and Leven
A .

Example 3.2 The bool arena is defined with Mbool = {?, 0, 1} λbool(?) = (O,Q, I) and
λbool(0) = λbool(1) = (P,A,N) and with the enabling relation ? `bool 0, 1.

Example 3.3 The empty arena I is the arena with no moves at all. The only legal play in I
is the empty play ε.

Suppose sa ∈ LA. Starting from a and following the justification pointers will always
lead to an occurrence of an initial move b, which we call the hereditary justifier of a in
sa. We can see that every legal play will be partitioned in subplays, each one consisting
of all occurrences of moves hereditarily justified by a given initial move. These subplays
are called threads. The current thread of a legal play sa ending with an opponent move,
denoted by dsae, is the thread of sa where a occurs. If sa ends with a Player move, the
current thread is then defined by dsea. We want the current thread to be a legal play, so it is
necessary to impose an extra condition on legal plays: a legal play s is well-threaded if for
every subplay ta ending with a Player move, the justifier of a is in dte. In a well-threaded
play, player always plays in the last thread where Opponent played.

Given arenas A, B, the product A � B and arrow A (B operations are defined respec-
tively as follows:

5

Delbecque

• MA�B = MA + MB (disjoint union)
• λA�B = [λA, λB] (copairing)
• m `A�B n iff m `A n or m `B n.

• MA(B = MA + MB

• λA(B =

[
〈λ

OP
A , λQA

A , λ
IN
A 〉, λB

]
• m `A(B n iff m `A n or m `B n or
λIN

B (n) = λIN
A (m) = I.

where λ
OP
A inverts the roles of the two players and λ

IN
A makes all moves of A noninitial. The

product arena A� B is intuitively understood as the arena where at each of Opponent’s turn
she can choose to play a move in either A or B, and where Player must answer in the last
component where Opponent played. In the arena A (B, after Opponent makes an initial
move in B, at each of his turns Player can choose to play either one of his moves in B or an
Opponent move in A.

Given a legal play s in an arena A, let nextA(s) = {a ∈ MA|sa ∈ LA} be the set of all
moves that can be legally made after the play s.

Definition 3.4 A probabilistic strategy for Player is a function σ : Leven
A → [0, 1] such that

σ(ε) = 1 and σ(s) ≥
∑

b∈next(sa)

σ(sab)

The set of traces of a strategy σ in A is the set of even length legal plays which are
assigned a non-zero probability by σ: it is denoted Tσ. A strategy σ is deterministic if
σ(s) = 1 for all s ∈ Tσ.

It is possible to describe a probabilistic strategy σ in conditional form. The probability
σ(b | sa) =

σ(sab)
σ(s) is the probability of Player choosing to play b after the play sa.

Composition of strategies is the way interactions between parts of a program are en-
coded in game semantics. Given two strategies σ : A (B and τ : B (C, we define a
new strategy σ; τ : A (C obtained by letting σ and τ “interact” on B. Before giving the
definition of composition, it is necessary to formalise this notion of interaction. The set of
interactions for A, B,C is

IA,B,C = {u ∈ (MA + MB + MC)∗ | u|AB ∈ LA(B, u|BC ∈ LB(C , u|AC ∈ LA(C}

where u|AB is the sub sequence of u obtained by deleting the moves of C, and similarly
for u|BC . The case of u|AC is a bit different because deleting from u the moves of B and
their associated pointers might leave the moves of A or C that are justified by B-moves
without justifiers. In this case, we define the justifiers of u|AC to be as follows: a move a
in C justified by a move b in B will be justified by the first move of either A or C we get
to by following back the justification pointers from a in u. The set of witnesses wit(s) of
s ∈ LA(C in an interaction IA,B,C is the set of interactions u ∈ IA,B,C such that u|AC = s.
The composition of two strategies σ : A(B and τ : B(C can now be defined as follows:

[σ; τ](s) =
∑

u∈wit(s)

σ(u|AB)τ(u|BC).

The identity strategy (or so-called “copycat strategy”) idA : A (A is neutral with respect
to composition. It is defined as the strategy which makes Player copy Opponent moves
between corresponding components. Formally, this is defined as the deterministic strategy

6

Delbecque

with trace
T (1A(s)) =

{
s ∈ LAl(Ar | ∀s′ veven s. s′|Ar = s′|Ar

}
.

Using all the structure defined so far it is possible to define a category of arenas and
probabilistic strategies. Taking arenas as objects, a morphism A → B is a strategy in
A (B. Composition of strategy is the needed composition, with the identity strategies as
identity morphisms. It is associative, and it is shown in [3] that probabilistic strategies are
closed under composition. This category is also symmetric monoidal. The operation � is a
tensor product, which acts on morphisms as follows. Given σ : A → C and τ : B→ D and
s ∈ Leven

(A�B)((A′�B′), we set [σ�τ](s) = σ(s|A(C)τ(s|C(D). All coherence isomorphisms are
easily defined using variants of the copycat strategy.

Threads have an important role in game semantics as a way to characterize the strategies
that encodes programs with side-effects, like stores. This is achieved by forcing Player to
use only the limited information available in the current thread instead of using all the
information that can be extracted from the whole previous plays, including move made in
other threads.

A strategy σ is well-threaded if Tσ consists only of well-threaded plays. Note that this
condition forces Player to answer in the last thread where Opponent played. Given two
well-threaded plays sab ∈ Leven

A and ta ∈ Lodd
A with dsae = dtae, we define match(sab, ta)

to be the unique legal play tab with b justified as in dsae. A well-threaded strategy σ is said
to be thread independent if sab ∈ Tσ, t ∈ Tσ, a ∈ next(t) and dsae = dtae implies that

σ(sab)
σ(s)

=
σ((match(sab, ta))

σ(t)
.

The meaning of this condition is that if Player plays according to σ, Player chooses his
answers with probabilities that only depend on the current thread, i.e. σ(b | sa) = σ(b | ta).

The diagonal strategy ∆A : A→ A�A is defined as the deterministic strategy with trace
set

{
s ∈ Leven

A(Al�Ar
| ∀s′ veven s.s′|Al ∈ idAl ∧s′|Ar ∈ idAr

}
. This is similar to the definition of

the identity strategy: ∆ instructs Player to use copying strategies between A and its two
copies Al and Ar. Possible conflicts in A are resolved by separating in different threads
moves made according to the left or the right copy plays. There is also a unique strategy
^A (I, namely the trivial strategy with trace {ε}.

The pairing of two thread independent strategies σ : A (B and τ : A (C is defined
by 〈σ, τ〉 = ∆A;σ� τ. Thus when Player plays using the pair strategy 〈σ, τ〉, he plays using
σ after an initial move in B, and using τ after an initial move in C.

For each arena A, (A,∆A,^A) is a comonoid. It is shown in in [8] that a strategy σ :
A (B is thread independent if and only if σ is a comonoid homomorphism. Using a
known fact in category theory[9], this implies that the restriction of the category of arena
and probabilistic strategies to thread independent strategies is a Cartesian closed category.
Note that projections strategies like πA : A�B(A are defined as copying strategies which
makes Player copies Opponent’s moves between the two A component arenas.

3.2 Quantum arenas

To model the quantum part of QDL, we have to define an arena where quantum data can
be represented as a strategy. This arena is defined in a similar way as the bool arena.
A play begin with Opponent asking Player about the measurement result of a quantum

7

Delbecque

measurement performed on the current quantum state. Player’s answers are the possible
measurements results and each answer can be chosen with a probability consistent with
quantum mechanics. The type of quantum measurement which can be used by Opponent
is the general description of quantum measurements called intervention operators intro-
duced by Peres [11]. The measurement process is conceived of as a unitary interaction of a
measurement apparatus with the quantum system to be measured, followed by a projective
measurement on the combined system. Let D(H) be the set of density matrices on H and
SD(H) be set of Hermitian positive operators of trace less than one. A quantum interven-
tion on a Hilbert space H is a collection of superoperators E = {Em : SD(H)→ SD(Hm)}
indexed by measurement results m, such that we have

∑
m tr (Em(ρ)) = 1 for any state ρ. If

the system is initially in state ρ, performing the quantum intervention yields result m with
probability pm = tr (Em(ρ)) and leaves the system in state Em(ρ)/pm. Note that the space
HBm may depend on the measurement outcome.

Let H be an Hilbert space. The arena [H] is the arena where questions are quantum
interventions of the form

E? =
{
E?

m : SD(H)→ SD(Hm)
}
.

The possible answers to E? are the possible measurements results m. A play in this arena is
a sequence of moves E?[1]m1 · · · E?[n]mn where the quantum interventions E?[k] may all be
different.

A quantum state ρ is modeled by a probabilistic strategy [ρ] in [H]. The strategy [ρ]
is defined by the weights [ρ]

(
E?[1]m1 . . .E?[n]mn

)
= tr

(
E

?[1]
m1 . . .E?[n]

mn (ρ)
)
. Superoperators

are composed as usual, but we use a convenient convention: if the domain of E does not
match the codomain of F we put EF = 0. This convention is consistent with the quantum
mechanical interpretation of superoperators: an impossible operation is assigned probabil-
ity zero. Note that the strategy [ρ] is thread independent: the answer to the last question
always depend of the previous questions which in general have modified the initial state
[ρ].

Using these strategies, we can now represent any trace-preserving superoperator F
taking states in HA to states in HB as a strategy. This strategy is denoted [F]; it makes
Player answers questions about the output state by measuring the input state in the way
described by the following typical play:

[HA] [E]
◦[HB]
E?

E?F
m

m

The quantum intervention E?F is the quantum intervention
{
E?

mF
}

obtained by composing
each intervention Em with F . All the quantum operations of QDL are interpreted using
variants of this basic scheme. In particular, the unitary strategy is a special case of the
above with F being the superoperator U associated to a unitary operation U. The way a
new quantum intervention is created from the initial one E? motivate the use of quantum
intervention: implementing a similar scheme with other quantum measurement formalisms
like projective measurements would not allow to represent quantum operations as general

8

Delbecque

as trace-preserving superoperators.
There is a similarity between consistent histories approach to quantum mechan-

ics [5,10,7] and the scheme used to define the strategy [ρ]. There is a clear connection
in “spirit” in the sense that both are based on sequences of measurement results. In this
perspective, the above idea used to represent a quantum operation F is new and could be a
structured way to think about quantum operations in that context.

3.3 Definition of the denotational semantics

We now use the quantum arena defined in the last section to define a denotational semantics
for QDL. First, the types are interpreted as follows:

[[bool]] = bool [[>]] = >
[[

qbit⊗n
]]

= qbit⊗n

[[A(B]] = [[A]]([[B]] [[A � B]] = [[A]] � [[B]]

The arena qbit⊗n is the arena
[
C2n

]
corresponding to the state space of n qbits. The other

arenas are operations are taken directly from classical game semantics. The arena> has one
possible even-length play: ?∗, and there is thus only one possible strategy aside from the
empty one. We denote this strategy ∗. The type operations × and⇒ correspond respectively
to the arena operations � and(. Given a context Γ = x1 : A1, . . . , xn : An, we set [[Γ]] to be
[[A1]] � · · · � [[An]].

We now turn to the definition of the interpretation [[M]] of a term Γ ` M : A. The
definition is by induction on the derivation of Γ ` M : A.

In the base case we must deal with variable and constant terms. For variables, the
interpretation of Γ, x : A ` x : A is defined using the projection strategies πA : [[Γ]]� [[A]]→
[[A]]. The denotations of the constants 0, 1, and ∗ are the standard constant strategies. A
quantum state constant ρ : qbit⊗n is interpreted as the quantum strategy [ρ] in qbit⊗n.

We describe the inductive cases involving quantum operations or new ideas. The other
cases are interpreted using the standard ideas of classical game semantics.

The definition of [[Γ,∆1,∆2 ` if P then M else N : A]] differs from the usual definition
for conditionals used in game semantics because of the linearity constraint. Assume that

[[P]] : [[Γ]] � [[∆1]](bool and [[M]] , [[N]] : [[Γ]] � [[∆2]]([[A]]

are already defined. Using the symmetry strategy associated to � and the duplicating strat-
egy ∆, we can define a strategy

r : ([[Γ]] � [[∆1]] � [[∆2]])(([[Γ]] � [[∆1]]) � ([[Γ]] � [[∆2]])

which reorganize the input arena. With this strategy, we can define [[if P then M else N]] to
be the composition r; [[P]] � id; cond([[M]] , [[N]]), where

cond([[M]] , [[N]]) : bool � ([[Γ]] � [[∆2]])([[A]]

is defined using a conditional strategy operation defined in general by the following
idea. Given any two arenas A and B and two strategies σ, τ : A → B, the strategy
cond(σ, τ) : (bool � A) (B is the strategy that makes Player answer an initial move in

9

Delbecque

B by asking for a Boolean b in the bool component and then makes Player play in the
components A and B using the strategy σ if b = 1 and τ if b = 0.

The first quantum operation we deal with is the measurement case. Suppose that

[[Q]] : [[Γ]] � [[∆1]](qbit⊗(n+1) and [[M]] : [[Γ]] � [[∆2]] � bool � qbit⊗n

are already defined. We can define
[[
let b, x = measi Q in M

]]
as the composition

r; [[Q]] ; measi; [[M]] where measi is the strategy described as follows. Let C be the quantum
intervention corresponding to a projective measurement in the canonical basis and I be the
identity quantum intervention. If the first move is a question in the qbit⊗n arena, Player use
the left scheme and if the first move is in the bool arena, then Player use the right scheme.

qbit⊗(n+1) measi // bool � qbit⊗n

E?

E? ⊗ C

(m, b)
m

?
b

qbit⊗(n+1) measi // bool � qbit⊗n

?
I ⊗ C

b
b

E?

E? ⊗ I
i

m
m

where E ⊗ F stands for the quantum intervention
{
Em1 ⊗ Fm2

}
(m1,m2). It is important to

point out that in the right scheme, Player must question Opponent two times. Since the first
intervention I⊗C alter the state, Opponent’s answer to the second question E?⊗I

i depends
on the first answer given. This is the only instance in the semantics described in this paper
where more than one thread is necessary the qbit⊗n arena. Because of the side effects
of measurements, we are forced to use thread dependent strategies to describe quantum
states. This is the point where we are forced to assume that qbit types are linear, since
thread dependent strategies cannot be duplicated using the usual ∆ duplicating strategy. In
contrast, previous work on quantum λ-calculi justified the need of the linearity hypothesis
by no-cloning theorem.

There are three tensor cases to deal with. In the first case, we tensor two known qbits.
Suppose that the strategies

[[
Γ,∆1, x1 : qbit⊗n ` M1 : qbit⊗n

]]
and

[[
Γ,∆2, x2 : qbit⊗m ` M2 : qbit⊗m

]]

are already defined, where FV(Mi) \ |∆i| = ∅, i = 1, 2. The strategy [[M1 ⊗ M2]] is defined
as the composition r; [[M1]] ⊗ [[M2]], where the strategy [[M1]] ⊗ [[M2]] is defined by the

10

Delbecque

following scheme:

([[Γ]] � [[∆1]]) � ([[Γ]] � [[∆2]]) [[M1]]⊗[[M2]]
◦qbit⊗n ⊗ qbit⊗m

E?
a1

...
an

b1

...

bk
m

where the probability that Player answers m to E? after the interactions s = a1 . . . an and
t = b1 . . . bk is tr (Em ρs ⊗ ρt). Note that while we take the tensor product of the two output
quantum arenas, we must take the classical game product of the classical input arenas.

In the second case, we tensor two qbits each constructed from unknown qbits. This
case is similar to the first one: suppose that[[

Γ,∆1 ` M1 : qbit⊗n
]]

and
[[
Γ,∆2 ` M2 : qbit⊗m

]]
are already defined and that FV(Mi) ∩ |∆i| = {xi}. The strategy [[M1 ⊗ M2]] is defined to
be the composition r � id; [[M1]] ⊗ [[M2]], but this time the strategy [[M1]] ⊗ [[M2]] must be
defined using the scheme that follows :

([[Γ]] � [[∆1]]) � ([[Γ]] � [[∆2]]) � qbit⊗n ⊗ qbit⊗m [[M1]]⊗[[M2]]
◦qbit⊗n ⊗ qbit⊗m

E?
a1

...
an

b1

...

bm

E? (Fs ⊗ Gt)
m

m

where Fs and Gt are the two trace-preserving superoperators used by Player respectively in
[[M1]] and [[M2]].

The third tensor rule is for cases where known and unknown states are tensored. In
this case we have to use a conditional preparation strategy defined using a combination of
schemes used in the first two cases. Assume that[[

Γ,∆1, x : qbit⊗n ` M1 : qbit⊗n
]]

and
[[
Γ,∆2 ` M2 : qbit⊗m

]]
are already defined and that FV(M1) \ |∆1| = {x} and FV(M2) ∩ |∆2| = ∅. The strategy

11

Delbecque

[[M1 ⊗ M2]] is defined as the composition r; [[M1]]⊗[[M1]] where this time the tensor strategy
[[M1]] ⊗ [[M2]] is defined with the scheme

([[Γ]] � [[∆1]]) � qbit⊗n � ([[Γ]] � [[∆2]]) [[M1]]⊗[[M2]]
◦qbit⊗n ⊗ qbit⊗m

E?
a1

...
ak

b1

...

bl

E? (Fs ⊗ Gt)
m

m

Player determines how to answer the initial question E? by first playing in the [[Γ]] � [[∆2]]
arena to determine which state ρs, s = a1 . . . ak, to prepare; we assume this state is prepared
by a superoperator Fs. After this, Player will start an interaction in [[Γ]] in order to learn
how the state represented by the term M1 is build from its input. In this case, we assume that
this construction corresponds to a superoperator Gt, where t = b1 . . . bl is the interaction in
the [[Γ]] part. The initial question is then transformed into the question (Fs ⊗ Gt)E? in the
input arena qbit⊗n, and the answer is copied back to the output arena.

4 Soundness

We now turn to the problem of proving a soundness result for the denotational semantics
defined in the last section. First, we need a substitution lemma.

Lemma 4.1 For any λ-calculus with quantum data terms Γ,∆1, x : A ` M : B and Γ,∆2 `

N : A with x ∈ FV(M), we have that

Γ,∆1,∆2 ` M
[
N/x

]
: B and

[[
M[N/x]

]]
= r; id� [[N]] ; [[M]]

Proof. This is proven by structural induction on the construction of M. �

The following proposition states that when a term M reduce to some value V with
probability p, the corresponding strategies [[M]] and [[V]] makes Player play in the same
way with probability p.

Proposition 4.2 If M ⇓p V, then for all well-opened sab ∈ T ([[V]]) we have that

[[M]] (b | sa) = p [[V]] (b | sa).

Proof. By structural induction on the derivation of M ⇓p V . Most of the proof follow
the usual argument for the classical case. We skip these to focus on the cases involving
quantum operations.

For measurement operations, consider first the single qbit case. Suppose that [[M]]
behaves as

[[
ρ
]]

with probability p. Assume that meas M reduces to 0 with probability

12

Delbecque

p tr(|0〉〈0| ρ). The strategy [[meas M]] is the composition [[M]] ; meas and, by induction hy-
pothesis, any interaction using this strategy will behave as an interaction using the strategy
[ρ]; meas. By definition of [ρ], this strategy behaves as the constant strategy 0 in bool with
probability tr (|0〉〈0| ρ), and thus [[meas M]] behaves as [[0]] with probability p tr (|0〉〈0| ρ).

The general measurement case is similar.
To deal with the tensor operation reduction rule, suppose that the proposition holds

when M1 ⇓
p V1 and M2 ⇓

q V2 and assume that M1 ⊗ M2 ⇓
pq V1 ⊗ V2. Since the definition

of [[M1 ⊗ M2]] is in three cases, these must be considered separately. In the first case, M1

and M1 are both terms with no free variables of type qbit appearing in the type context. By
definition [[M1 ⊗ M2]] = r � id; [[M1]] ⊗ [[M2]] and by the induction hypothesis this will
behaves as [[M1 ⊗ M2]] = r � id; [[V1]] ⊗ [[V2]] with probability pq. The other two cases are
similar, except that the definition of [[M1]] ⊗ [[M2]] is different in each case. �

The next result is adequacy, the converse of the previous one. As for classical λ-
calculus, we use a computability predicate to prove adequacy for QDL. The main difference
between the following definition and the usual definition of computability is the use of ex-
tended variables. Note that neither the presence of extended variables or linearity have any
significant impact on this definition.

Definition 4.3 A QDL term M is computable if

(i) M is closed with M : A and A = bool, > or qbit, and if for all sab ∈ T (b | sa) we
have that [[M]] (b | sa) = p [[V]] (b | sa), then M ⇓p V ,

(ii) x1 : A1, . . . , xn : An ` M : A and for all computable closed terms Γ ` N1 : A1, . . . ,Γ `

Nn : An we have that M[N1/x1, . . . ,Nn/xn] is computable,

(iii) M is closed with ` M : A ⇒ B and for all closed N with ` N : A the term MN is
computable.

Lemma 4.4 All QDL terms are computable.

Proof. By induction on the construction of M. The part of the proof involving classical
constructs is follows the usual pattern as in classical game semantics, so we focus here
on the quantum operations. Using the definition of computability, we can assume that the
building components of M are computable closed terms.

The most interesting case is measurement since it involve an argument specific to QDL.
We begin by the one qbit measurement case. Suppose that M = meas N where N is a closed
computable term of type qbit. Assume that V is a boolean value and that [[M]] (b | sa) =

p [[V]] (b | sa) for all well-opened sab ∈ T ([[V]]).
When Player uses [[M]], a typical play is

I
[[N]]

◦qbit meas
◦bool

?
C?

m
m

where C? is the quantum intervention corresponding to a projective measurement in the
canonical basis. Let p be the probability that using [[N]] the answer is 0 and 1 − p the

13

Delbecque

probability that the answers is 1. Although it is not possible to infer which state ρ is used
to answer C? using these probabilities, we know that if player was using ρ′ = p|0〉〈0|+ (1−
p)|1〉〈1| instead of ρ, we would get the same play as above. Since meas ρ′ ⇓p 0, we get
that meas ρ ⇓p 0 as required.

We use a similar argument to deal with the general measurement case. For unitary op-
erations, the above problem does not occur since the strategy [[UM]] = [[M]] ; [U] provides
the measurement probabilities for all quantum interventions E?. This allow one to find, via
the Gleason theorem, a state ρ such that [[M]] behaves like [ρ] with probability p. Using
this and the induction hypothesis on M, we get the desired result. �

Adequacy is a direct corollary to the last lemma.

Theorem 4.5 Let M be a closed term of type bool, > or qbit⊗n. If for all well-opened
sab ∈ T ([[V]]) we have that [[M]] (b | sa) = p [[V]] (b | sa), then we have that M ⇓p V.

To give the final result, we need to introduce the necessary concept of contextual equiv-
alence for QDL. A context C[−] of type B with a hole of type A is a term C[−] with a
special variable “−” (possibly an extended variable) such that − : A ` C[−] : B. Capture-
free substitution of a term N in a context C[−] is denoted C[N].

Definition 4.6 Two closed terms ` M1 : A and ` M2 : A are contextually equivalent if for
every ground-type context C[−] with a hole of type A we have that

C[M1] ⇓p V ⇐⇒ C[M2] ⇓p V.

The following soundness result follows from consistency and adequacy using a standard
argument.

Theorem 4.7 (Soundness) Let M1 and M2 by two closed QDL terms. If [[M1]] = [[M2]],
then M1∼M2.

5 Conclusion and future work

We introduced a new quantum λ-calculus and, using tools from game semantics, we ob-
tained a soundness result which validated its syntax and the structure of its type system.
Some important features of the language, like linearity and the different form of the ten-
sor operation, were motivated directly using the properties of the quantum strategies used
to model the language. The game semantics approach allowed us to model directly the
classical and quantum constructs of the language and could be extended to languages with
extra features, like recursion, using ideas from classical game semantics. Usually game
semantics is used to get full-abstraction results by putting appropriate restrictions on the
strategies. Here the main goal was instead to introduce a new kind of model for quantum
programming languages. While the soundness result we obtained confirms the usefulness
of using quantum games to model quantum types, it is a natural next step to seek a full-
abstraction result for QDL. The main difficulty is that there is no known characterisation of
the probabilistic strategies of the form [F] in [HA] ([HB] among all possible probabilis-
tic strategies in this arena. Gleason’s theorem [6] is one result in this spirit, but there is no
similar result for the case of superoperators. A full abstraction result here would thus be

14

Delbecque

a major advance in understanding how to characterize quantum processes. In this case the
obstacle has nothing to do with the usual subtleties associated with higher-type languages.

We did not explore fully the categorical properties of quantum arenas introduced in this
paper. For example, one could consider the category of the category of arenas of the form
[H] and probabilistic strategies that correspond to quantum operations. This category or
some of its subcategories could provide new models for the categorical structures associated
to quantum mechanics [1,2,13].

Finally, note that there is a way to relax the definition of quantum arena given in this
paper by dropping the condition that the question in [H] consists of quantum intervention
on H. The resulting arena allow Opponent to use quantum interventions over any space.
This possibility was useful in [4] to model a λ-calculus equipped quantum stores which
can contain quantum states of variable size. In that language, quantum data can only used
though references in the language; this makes the linearity constraint unnecessary since
having multiple references to a qbit is not forbidden by the no-cloning theorem. In this
case also the properties of quantum strategies were used as a guide in the construction of
the language, a further demonstration of the usefulness of quantum strategies in the study
of higher-order quantum programming languages.

References
[1] Abramsky, S. and B. Coecke, A categorical semantics of quantum protocol, in: Proceedings of the 19th IEEE conference

on Logic in Computer Science: LICS 2004 (2004), pp. 415–425.

[2] Coecke, B. and D. Pavlovic, Quantum measurements without sums (2006).

[3] Danos, V. and R. Harmer, Probabilistic game semantics, in: ACM Transactions On Computational Logic, Special Issue
for LICS’00, Association For Computing Machinery (2002), pp. 359–382.

[4] Delbecque, Y. and P. Panangaden, Game semantics for quantum stores, in: A. Bauer and M. Mislove, editors,
Mathematical Foundations of Programming Semantics (2008), pp. 119–139.

[5] Gell-Mann, M. and J. Hartle, Classical equations for quantum systems, Physical Review D 47 (1993), pp. 3345–3382.

[6] Gleason, A. M., Measures on the closed subspaces of a hilbert space, Journal of Mathematics and Mechanics (1957),
pp. 885–893.

[7] Griffiths, R., Consistent histories and quantum reasoning, Physical Review A 54 (1996), pp. 2759–2774.

[8] Harmer, R., “Games and Full Abstraction for Nondeterministic Languages,” Ph.D. thesis, Imperial College (1999).

[9] Jacobs, B., Semantics of weakening and contraction, Annals of Pure and Applied Logic (1994), pp. 73–106.

[10] Omnès, R., “The Interpretation of Quantum Mechanics,” Princeton Univ. Press, 1994.

[11] Peres, A., Classical interventions in quantum systems. I. The measuring process, Physical Review A 61 (2000).

[12] Selinger, P., Towards a semantics for higher-order quantum computation, Proceedings of the 2nd International
Workshop On Quantum Programming Languages, Turku, Finland. (2004), pp. 127–143.

[13] Selinger, P., Dagger compact closed categories and completely positive maps, in: Proceedings of the 3rd International
Workshop on Quantum Programming Languages, number 170 in Electronic Notes in Theoretical Computer Science,
2007, pp. 139–163.

[14] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classical control, Mathematical Structures
in Computer Science 16 (2006), pp. 527–552.

[15] Selinger, P. and B. Valiron, On a fully abstract model for a quantum linear functional language, in: Proceedings of the
4th International Workshop on Quantum i Programming Languages, Oxford, July 17-19, 2006.

[16] Valiron, B., “A functional programming language for quantum computation with classical control,” Master’s thesis,
Departement of Mathematics, University of Ottawa (2004).

15

