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Abstract

In this thesis, we present a new model for higher-order quantum programming lan-
guages. The proposed model is an adaptation of the probabilistic game semantics de-
veloped by Danos and Harmer [DHO2]: we expand it with quantum strategies which
enable one to represent quantum states and quantum operations. Some of the basic
properties of these strategies are established and then used to construct denotational
semantics for three quantum programming languages. The first of these languages is
a formalisation of the measurement calculus proposed by Danos et al. [DKPO7]. The
other two are new: they are higher-order quantum programming languages. Previous
attempts to define a denotational semantics for higher-order quantum programming
languages have failed. We identify some of the key reasons for this and base the design
of our higher-order languages on these observations.

The game semantics proposed in this thesis is the first denotational semantics for
a A-calculus equipped with quantum types and with extra operations which allow one
to program quantum algorithms. The results presented validate the two different ap-
proaches used in the design of these two new higher-order languages: a first one where
quantum states are used through references and a second one where they are intro-
duced as constants in the language. The quantum strategies presented in this thesis
allow one to understand the constraints that must be imposed on quantum type systems
with higher-order types. The most significant constraint is the fact that abstraction over
part of the tensor product of many unknown quantum states must not be allowed.

Quantum strategies are a new mathematical model which describes the interaction
between classical and quantum data using system-environment dialogues. The inter-
actions between the different parts of a quantum system are described using the rich
structure generated by composition of strategies. This approach has enough generality
to be put in relation with other work in quantum computing. Quantum strategies could
thus be useful for other purposes than the study of quantum programming languages.



Abrégé

Nous présentons dans cette thése un nouveau modele pour les langages de program-
mation quantique. Notre modele est une adaptation de la sémantique de jeux prob-
abilistes définie par Danos et Harmer [DHO2]: nous y ajoutons des stratégies quan-
tiques pour permettre la représentation des états et des opérations quantiques. Nous
établissons quelques propriétés de base de ces stratégies. Ces propriétés sont en-
suite utilisées pour construire des sémantiques dénotationnelles pour trois langages
de programmation quantique. Le premier langage est une formalisation du calcul par
mesures proposé par Danos et al. [DKPO7]. Les deux autres langages sont nouveaux:
ce sont des langages quantiques d’ordre supérieur dont la syntaxe a été construite a
partir d’observations expliquant 1’échec des tentatives précédentes pour construire une
sémantique dénotationnelle pour de tels langages.

La sémantique de jeux présentée dans cette these est la premiere sémantique dénota-
tionnelle pour de tels A-calculs équipés de types et d’opérations supplémentaires per-
mettant la programmation d’algorithmes quantiques. Les résultats présentés valident
les deux approches différentes utilitées dans la conception de ces deux nouveaux lan-
guages d’ordre supérieur: une premiere ou les états quantiques sont indirectement ac-
cessibles via des références et une seconde ou ils sont introduit directement comme
des constantes dans le langage. Les stratégies quantiques présentées permettent de
comprendre les contraintes devant étre imposées aux systemes de type quantique com-
portant des types d’ordre supérieurs. La contrainte la plus importante est le fait que
I’abstraction sur une partie d’un état quantique comportant plusieurs gbits inconnus
doit étre prohibée.

Les stratégies quantiques constituent un nouveau modele mathématique qui décrit
I’interaction entre les données classiques et quantiques par des dialogues entre systeme
et environnement. L’interaction entre les differentes parties d’un systéme quantique
y est décrite a I’aide d’une structure riche en utilisant la composition de strategies.
L approche utilisé est assez générale pour étre mise en relation avec d’autres travaux
en informatique quantique. Les propriétés des stratégies quantiques pourraient donc
étre utiles a d’autre fins que 1’étude des languages de programmation quantiques.
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Chapter 1

Introduction

Une question presque insondable, ou nous ne nous arréterons pas, est de savoir jusqu’a
quel point nos moyens de raisonnement offrent, par essence, le caractere de regles de
jeu, autrement dit, ne sont valables que dans un certain cadre intellectuel, ol on les tient
pour impérieux. Y a-t-il toujours dans la logique en général, et dans le syllogisme en
particulier, une convention ludique tacite, par laquelle on tient compte de la valeur des

catégories et des concepts comme des pions et des cases d’un échiquier? A d’autres de
trancher la question.

Johan Huizinga
Homo Ludens, essai sur la fonction sociale du jeu, 1938

1.1 Quantum programming language theory

Quantum algorithms are usually described using the low-level formalism of quantum
circuits. This approach is very useful to study the complexity of quantum algorithms,
a theme which, together with quantum information and quantum cryptography, is one
of the central research preoccupations in the field of quantum computing. Another way
to study quantum algorithms was not given much attention until recently: the devel-
opment of more structured languages to describe quantum computation. The study of
the structure and the various semantics of a programming language is an important
way to understand how programming constructs, like control flow mechanisms, ab-
stractions, stores and other programming languages features, interact with each other
and contribute to the expressiveness and structure of the programming language. Since
quantum computing introduces radically new computing constructs, it is natural to try
to apply the methods of programming language semantics to understand their contri-
bution in a similar manner.

Many quantum programming languages have been proposed, starting from the
quantum pseudocode of Knill [Kni96], to the more recent quantum A-calculus pro-
posed by Selinger and Valiron [SV06a]. In the last few years the structure of quantum



programming languages has become a topic of study in itself, using various ideas from
category theory and classical programming language theory. Many important ques-
tions in this field can be seen as variants of a central one: what is the structure of the
interactions between classical and quantum data? These interactions are the key to
understanding the basic quantum mechanical operations like measurements and tensor
products, which together lead to many counter-intuitive phenomena associated to quan-
tum mechanics, like non-locality. Understanding them is also a central problem if we
want to integrate quantum programming constructs in a classical language. An impor-
tant conceptual problem is the design of a higher-order quantum language, a problem
which is also related to these classical-quantum interactions. As a final example of
the importance of this question, consider the problem of mixing classical and quantum
data in the graphical calculi. These graphical languages are diagrammatic formalisms
abstracting from the language of monoidal categories and have proven very useful in
understanding and reasoning about abstract quantum mechanics [AC04, CP06a, Sel07].
These graphical languages provide a structure to understand the flow of quantum in-
formation in quantum protocols and algorithms. To incorporate classical data in them,
such as the data arising from measurements, classical data is represented using a choice
of particular basis in the Hilbert space model used for quantum data. This idea has
been abstracted in the language of symmetric monoidal categories as classical objects
equipped with morphisms which allow one to use the classical data encoded as quan-
tum states.

1.2 Game semantics

The goal of this thesis is to adapt game semantics to quantum computing. Game seman-
tics was a very successful approach in the field of programming language theory. It was
adapted to analyse many different programming language features using a common set
of basic concepts. The central idea of game semantics is to represent computations as
interactions or dialogues between a system executing a program and its environment.
A program is viewed as a strategy that tells the system how to choose its next action
using the preceding part of the interaction. By adapting the rules governing these inter-
actions, game semantics can be used to model, in a very tight manner, many different
languages.

It should be noted that the games referred to in game semantics are not at all like
the games discussed in traditional game theory. In game semantics of programming
languages, the concept of winning and losing, or of more general payoff schemes, is
not used because the focus is on the structure of the possible interactions between
the players. In contrast, in traditional game theory one typically does not study the
interaction between agents; the focus is to find optimal strategies for the players.

The quantum games we present in this thesis are defined following the ideas of
game semantics: they are used to model quantum computation as an interaction be-
tween a quantum system and its environment. We believe this approach is an inter-
esting guide when we seek answers about the central question of classical-quantum
interactions, the central idea of game semantics being interactions between systems.
We introduce quantum strategies to the arsenal of game semantics, and use them to
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analyse various quantum programming languages. In classical programming language
theory the main reason to use games and strategies as denotation of programs is to get
full abstraction results. To prove these results, one has to use the fact that the game’s
rules can be adapted to characterise the programs tightly. Full abstraction is not our
main goal in this work; here we focus on using quantum games and strategies to un-
derstand the structure of quantum programming languages in terms of interactions.

1.3 Overview

In chapter 2, we give an overview of quantum computing and of game semantics. We
also present three example quantum programming languages. In chapter 3, we define
and explore a notion of quantum strategy based on previous work on probabilistic game
semantics. The three remaining chapters use quantum strategies to define denotational
semantics for a typed variant of the measurement calculus 4 and for two new quantum
A-calculi that we introduce in chapter 5 and chapter 6.

11



Chapter 2

Background

2.1 Quantum computing

2.1.1 Linear algebra and the Dirac notation

We need first to review some basic linear algebra results. In this thesis, we use the
Dirac (or so called “bra-ket”) notation widely used in quantum mechanics and quantum
computing.

Hilbert spaces A complex Hilbert space H is a vector space over C equipped with
an inner product (—, —)y and which is complete with respect to the associated norm,
defined by ||u|| = v/(u, u). Unless stated otherwise, all Hilbert spaces are assumed to be
of finite dimension. Such spaces are isomorphic to C" and are automatically complete
for any inner product. The elements of H are called kets, written with the right half
of a bracket: the vector u is denoted by |u). For an indexed family of vectors, it is
customary to keep only the indexes in the notation. For example, if e, e; is a basis of
H, the usual notation is |0), |1) instead of |eg), |e1).
Given a vector |u) € H, the linear function (u|: H — C is defined by

ul ((v) = (ju), V)

Functions defined in this manner are called bras. The function mapping |u) to (u| is
denoted . The Dirac notation allows a simplification of the inner product notation
(lu), [v)) by using the simpler notation (u|v).

An orthonormal basis of H is a generating set of vectors [i) € H such that (i|j) =

where
5, = M=
0ifi#j

0

ijs

Dual spaces The dual H* of a Hilbert space H is the vector space of all linear func-
tionals H — C. The Riesz representation theorem for finite dimensional complex
Hilbert spaces says that all functionals in H* are bras.

12



Given a basis |i) for H, the set of functionals (i| is a basis of H* called the dual
basis of |i). It is the unique set of functionals (i| such that(i|j) = ¢6;;. H* is always
a Hilbert space because we can define ((ul, (v|)y- by (v|u). Note that the map | takes
A: Hy - Hyto A: H; — H}.

Maps between Hilbert spaces We denote the set of all linear maps H; — H, by
hom(H,, H,); the set of all linear maps H — H is M(H). The matrix representation
with respect to bases |i) and |j) of H; and H, of a map A € hom(H, H>) is the matrix
with entries a;; = (jlAli) = (7), Ali)).

There is a natural way to extend the map T to maps A: H; — H,: the adjoint
A": H; — H; to amap A is defined by

AT(ul) = (Alu)'.

It follows directly from the definitions that if g;; are the components of the matrix
representation of A, then the elements of the matrix representation of A" are aj;, where
the overbar denotes complex conjugation.

The unitary maps U € M(H) are those satisfying UT = U~!. Unitary maps pre-
serve inner products and norms since (u|UTU|v) = (ulv).

A linear map A € M(H) is Hermitian if A" = A.

A projection operator is a Hermitian map P: H — H such that P> = P. The
set of projection operators on H is denoted by P(H). Two projection operators are
orthogonal if PP, = P,P; = 0. This relation is denoted by P; LP,. A family of
projectors P; is complete if they are pairwise orthogonal and

> Pi=1y.
i

In Dirac notation, |u){v| denotes the linear map H — H defined by

[}V ((w)) = (vIw|u).

In particular, the map |u){u|, which we also denote by [u], is the projection map onto
the subspace spanned by |u). Given an orthonormal basis |i), a very useful identity is
2 liXil = In.

Given an orthonormal basis i) of H, the set of maps |i){j| is a basis of M(H).

Theorem 2.1. (Spectral decomposition) Let H be a complex Hilbert space. For every
Hermitian map A € M, there is an orthonormal basis |i) and complex numbers A; such

that
A=) 4Ll

A map A € M is positive if (u|AJlu) > 0 for all |u) € H. The set of positive maps
on H is denoted by Pos(H). A linear operator M(H;) — M(H,) is positive if it can be
restricted to a map Pos(H,) — Pos(H,).

Definition 2.2. The Lowner partial order [Low34] on M(H) is defined by

A<B < B-Ae€Pos(H).

13



Tensor products Given two Hilbert spaces H; and H,, we define their tensor prod-
uct H; ® H, to be the vector space generated by all pairs |u;) ® |up) with the following
identifications:

L (jup) +u2)) ® V) = lug) ® |v) + uz) ® |v)
2. [y (vi) +1v2)) = [u) ® [vi) + [u) ® [v2)
3. (Aw) ® vy = Auy ® [v)) = |u) ® (A]v))

The Dirac notation convention is to leave the ® operator implicit, and even sometimes
to merge tensor products into a single ket:

[u) ® [v) = [w)|v) = luv)

The space H; ® H, is also a Hilbert space when the inner product of |u;)|u,) and |[v;)|v,)
is defined to be

uil{uallvidlva) = Cuglvi Xualvz).

Given orthonormal bases |i) and |j) for H; and H, respectively, the set of vectors of
the form |ij) is an orthonormal bases for H; ® H,.

The tensor product A; ® A, of two maps A; € hom(H, K;) and A; € hom(H,, K>)
isamap H; ® H, — K; ® K, defined by

A1 ® Agl)|v) = (A1]u)) ® (Az|v)).

Given orthonormal bases |i1), |i2), |j1), |j2) of Hi, H>, K; and K, respectively, the
matrix representation of A; ® A, for bases |iji») and |j; j») can be computed from the
elements of the representation of A; and A;:

@ivirjijo = (J1J2l A1 ® Asliin) = (JilA1lin){j2lAzliz) = a;,j,ai,),
A map A € hom(H, K) can always be extended to a map
Ho®H®H, > H ®KR®H,,

namely Iy, ® A ® Iy,. We will often abuse the notation and omit the identity maps
from such tensor products, denoting Iy, ® A ® Iy, simply by A. When there could be
ambiguity on which component A is acting, we use superscript labels to remove the
ambiguity.

Trace and partial trace The trace tr(A) of A € M(H) is defined as follows: take any
orthonormal basis |i) of H, and put

tr(A) = Z(ilAli).

This definition can be shown to be independent of the choice of basis. The trace oper-
ator tr is linear and cyclic, meaning that tr(AB) = tr(BA).

14



The partial trace operation tr'> takes elements in M(H; ® H,) to elements of
M(H,). It is defined in a manner similar to the trace, but by summation over a basis |i)

of Hz:
tr2(A) = Z<i|A|i>.

This is also independent of the choice of basis. Note that |i) and (i| implicitly denote
Iy, ® i) and Iy, ® .
A map &: M(H|) — M(H,) is said to be trace preserving if tr (6(A)) = tr (A) for
all A € M(H,). It is trace non-increasing if tr (6(A)) < tr (A) for all A € M(H)).
Using traces it is possible to define an inner product on M(H) using the formula

(A, B) = tr(A"B).

Since H is assumed to be finite-dimensional, this inner product automatically gives
M(H) a Hilbert space structure.
A linear map &: M(H;) — H; has an adjoint & with respect to this inner product
which satisfies
tr (AS(B)) = tr (§"(A)B).

It is easy to show that & preserves traces if and only if & is unital, i.e. (/) = I.

2.1.2 Quantum mechanics

Basic postulates

Quantum mechanics is the physical theory build from the following four postulates.

L. Quantum systems A quantum system A is described by a separable Hilbert space
H, over the field of complex numbers. A state of A is a ray (one dimensional subspace)
in Hs. Unless stated otherwise, we work with normalized vector representatives of
states, that is to say that the ray spanned by |¢) € Hy with (#|¢) = 1 is identified with
6.

We work only with complex Hilbert spaces of finite dimension, all of which are
separable and isomorphic to C" for some 7.

II. Evolution The evolution over time of a quantum system A is described by a uni-
tary operator U on Hy: if the system starts in state |¢), then after the evolution the
system is in state U|¢p).

III. Measurement A measurement is the process by which information about the
state of a quantum system A is obtained. There are many types of measurements used
in quantum theory, but we assume that the most basic kind is described in what follows.

A projective measurement of the state of a quantum system A is a family of projec-
tion operators P = {P; | i = 1,...,n} on Hy such that:

1. PinzéijPi,

15



2. ZiPi :IHA'

If a measurement # is made on a system in state |¢), the result i is observed with
probability (¢|P;|¢). Measuring the state of the system changes it; if the measurement
result is i, the state after the measurement is the normalized projected vector

Pil$)

NTIZ0DY

IV. Compound systems The Hilbert space describing the quantum system obtained
by combining two quantum systems A and B is H4 ® Hp.

Entanglement

The fact that the state space of a compound system AB is the tensor product H4 @ Hp
has important consequences which distinguish quantum systems from classical ones.
The main distinguishing feature is the existence of entangled states which cannot be
written as a tensor product |u)|v) of two states |u) and |v).

To illustrate this, suppose a quantum system AB is in the following entangled state:

100y +]11)

|Boo) N

If two independent measurements
Pa={Pl,P3}, Py={P} P

are sequentially performed on each component, the results obtained are correlated.
Indeed, the possible results for the first measurement are i = 1 or 2, with probability

tr (P @ 1Boo) Bool) -

When the B subsystem is measured with PEB the result will be either j = 1or?2, with
probability

pij =tr ((IA ® Pf) (Pf‘ ® IB) |,300><ﬁ00|)-

We can see that the distributions for i and j are not independent, since in general
pip;j = tr(P @ I5 |Boo)(Bool) tr (I ® PP [BooXBool) # pis

where p; = X; pij and p; = }; pij. In the case where the projectors Pj‘ Pf are the
projectors onto the canonical basis [7){i| | j){;l, the joint probability distribution is p;; =
1if i = jand O otherwise. The meaning of this is that if the system A is measured in the
canonical basis and i is observed, someone measuring the system B with knowledge of
the result of the measurement at A knows with certainty that the result will be j = i.

16



Mixed states

We introduce below the main formalism used to describe and manipulate quantum
states about which there is only partial information.

An ensemble of quantum states is a finite set of states {|¢;)}, i € I, together with a
corresponding set of probabilities p; such that }}; p; = 1. To any ensemble there is an
associated operator p = ), p;|¢:){¢:|. This operator is always positive and has trace 1;
these two conditions are the key to get the following mathematical description:

Definition 2.3. A positive operator p is called a density matrix (or density operator)
if tr(p) = 1 and subdensity matrix (or subdensity operator) if tr(p) < 1.

We denote the set of all density matrices of a Hilbert space H by D(H), and the set
of all subdensity matrices by SD(H). A simple consequence of the spectral decompo-
sition theorem is that every density matrix can be decomposed as an ensemble, though
not necessarily uniquely.

Another important way to think about density matrices is given by the following
result, which is in fact a consequence of Gleason’s result [Gle57]:

Proposition 2.4. (Gleason’s theorem) Let H be a finite dimensional Hilbert space with
dim(H) > 2. For every function p: P(H) — [0, 1] such that

1. p(l)=1and
2. p(P1+ P2) = p(Py) + P(Py) if Py LP,
there is a density matrix p such that p(P) = tr(Pp).

Finally, note that the restriction of the Lowner partial order to SD(H) is a w-directed
complete poset (every countable directed set has a least upped bound) with the zero map
as minimum element [Sel04b].

Other types of measurements

The projective measurements used in the description of the quantum mechanics pos-
tulates is not the only way to describe quantum measurements. The other descriptions
all involve the idea that measurements are performed by making a quantum system A
interact with a measurement apparatus, which is just another quantum system B. Fol-
lowing this point of view, the measurement process takes place in the combined system
AB, and cannot in general be described by a family of projectors on subspaces of Hu
alone.

A positive operator valued measure (henceforth referred to as a POVM) on a
Hilbert space H is a family of positive operators A,, such that

ZA,,, = Iy.

If the system is in state p, performing the POVM measurement A,, will yield result m
with probability p,, = tr(A,,p). Unless the operators A,, are defined in some way that
allows one to compute the state after the measurement yielded the result m (as it is

17



the case below with generalised measurements and quantum interventions), there is no
unique way to determine the state after the measurement has been performed.

Contrarily to the case of projective measurements, in a POVM measurement the
maps A,, associated to measurement results are not necessarily pairwise orthogonal.
This has the consequence that there can be POVM measurements with different mea-
surement results than is possible with any projective measurement, since in the latter
case orthogonality forces the number of different outcomes to be less than dim(H).
This can be explained by the interpretation of POVM as being a projective measure-
ment in an enlarged system. This interpretation is possible because Neumark’s theo-
rem [Neu43] implies that that any POVM can be seen as the restriction by partial trace
of a projective measurement on a larger Hilbert space.

Another kind of measurement is called a generalised measurement. These are
specified by giving a family of maps M,,: Hy — Hj, indexed by the possible measure-
ment results, and satisfying the condition

Z MM, =1
m

The probability of observing m if a generalised measurement is performed while the
system is in state p is

Pm =1 (MmpMJ:,) s

and the measurement process leaves the system in the state

1 T
—M,, pM,),.

m

Superoperators and interventions

It is natural to seek a description for the physical evolution of unknown quantum states
as described by density matrices. This description must satisfy various conditions.
First, it must be a map that sends subdensity matrices to subdensity matrices. Second,
it must preserve convex combinations of density matrices, because we want these maps
to preserve probability distributions. Finally, if the evolution map is applied to part of
a larger system, and the rest of the system is left unchanged, then the resulting larger
map for the whole system must still send density matrices to density matrices.
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Definition 2.5. A superoperator & is a positive linear map M(H) — M(H>) such that
1. & is trace non-increasing,
2. & is completely positive: E ® Iy, is positive for all Hilbert spaces Hj

It can be verified that superoperators satisfy all the above requirements. Complete
positivity is a necessary condition because there are maps that are positive but not
completely positive; one can consider, for example, the transposition map

T: M(C?) - M(C?)
defined by 7 (|i){jl) = |/)(i]. If we extend 7 to 7 ® IM(CZ) and apply this extended

operator to the positive matrix Y;; [i){jjl = X;; [){jl ® [){jl, we get

(eI

Dl |i><j|] = D T (D@l = ) Iply @ 1lj),
ij ij i

or, in matrix form

SO O
o = O O
oS o= O
— o O O

which is clearly not positive.

Superoperators can be characterised in various useful ways. The first one is known
as Kraus decomposition. The next result is an adaptation of Choi’s theorem for com-
pletely positive maps [Cho75, Kra83].

Proposition 2.6. For any superoperator &: there is a set of matrices {E;} satisfying
i E;E,- < I such that

EA) = Z EAE!
i
We call the matrices E; the elements (also called the Kraus elements) of the decom-
position of the superoperator.

Note that the decomposition given in this proposition is not necessarily unique. For
example, a simple computation shows that the elements

a=5(32) o5l %)

and the projection maps onto the canonical basis F; = |0)(0] and F, = |[1){1] both
define the same superoperator.

Example 2.7. The superoperator elements for some fundamental examples are as fol-
lows:

e Adding an ancilla |¢): I ® |¢)
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o A unitary transformation U: {U}
e A projective measurement (not necessarily complete) {P;}: {P;}
e Tracing out a subsystem with orthonormal basis {|i)}: {I ® (i]}

Another useful characterisation of superoperators is a result showing how to de-
compose them into elementary operations. It says that every superoperator can be
thought of as a sequence of operations consisting of adding an ancilla state to the
starting space, then applying a unitary transformation, then performing a projective
measurement and finally tracing out part of the system in the resulting state. Note that
is it possible to learn something about the projective measurement result in the process.
In that case the superoperator describing the projective measurement step has {P;} as
elements, where ), P; < I, which entails that the superoperator is trace decreasing since

tr (Z P; pPi] = Z tr(P; p) < tr(p)

for any density matrix p. The following proposition is shown in [NC00].

Proposition 2.8. Every superoperator &: M(H) — M(H,) can be decomposed into
a sequence of ancilla-adding, unitary, projective measurement and partial trace super-
operators.

Intervention operators

Peres introduced in [Per00] a very general description of quantum measurements called
intervention operators. The measurement process is conceived as a unitary interac-
tion of a measurement apparatus with the quantum system to be measured, followed by
a projective measurement on the combined system. Mathematically, Peres shows that
this process is described by superoperators: if the system is initially in state p, then,
after reading the result m with probability

Pm =1 [Z EmlpE;,,) s
i

the system is left in state

_ %iEwpE,,
= —pm .
Note that p,, can be written as tr(A,,p) if we put

An= Y E} Ep.
i

In general, we define a quantum intervention to be a family of superoperators

Pm

En: SD(H4) — SD(Hp )

m
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indexed by the possible measurement outcomes m, such that },, p,, = 1 for all p.
Note that the output space Hp, may depend on the measurement outcome; this feature

makes quantum interventions more general than superoperators. Since we must have
>om Pm = 1, &, must satisfy the following condition:

tr(En) = > tr| Y EnpE |=te| ) Anpl|=1,
Bt = S $ bt | T

m m

and since this must hold for all p, this is equivalent to asking that },, A,, = I, i.e. when
the matrices A,, are the components of a POVM.

Note that quantum interventions are different from quantum instruments [DL70],
another similar generalisation of superoperators, because the output state of a quantum
instrument is in a fixed Hilbert space while in a quantum intervention the output space
depends on the measurement result.

2.1.3 Quantum computation

The field of quantum informatics originates in the 1970’s, when the first quantum in-
formation theory results were proved. These provided some insight into the power and
limitation of the idea of using quantum states to carry information. [Hol73]. In the
1980’s, the first formal model of quantum computation was introduced in the form of
a universal quantum Turing machine [Deu85]. The most widely cited quantum algo-
rithms were discovered in the 1990’s: the Deutsch-Jozsa algorithm [DJ92], the Grover
algorithm for searching an unsorted database [Gro96], and the Shor algorithm for fac-
toring [Sho94]. All three are examples of algorithms using quantum resources in a
clever way in order to perform tasks more efficiently than can be done using classical
algorithms.

Quantum algorithms

The basic token of information in quantum computing is called a gbit: it is a quantum
state in the Hilbert space C? which is taken as the simplest piece of information. The
computational basis of the space of gbits is the canonical basis of C? and its two
vectors are conventionally denoted by |0) and |1). They are seen as an embedding of
the classical bits 0, 1 into the space of gbits.

The common way to describe quantum computation is guantum circuits, which can
be described as follows. A set of gbits to operate upon is fixed, together with input
and output subsets of these gbits. Each gbit that is not part of the input set is assumed
to be prepared in some fixed initial state. The computation itself is represented as a
sequence of unitary transformations on the set of all gbits associated to the algorithm.
At the end, non-output gbits are measured or simply discarded (traced out). Some of
the most important unitary operations used in quantum circuits are given in table 2.1.

Controlled operations Some steps in quantum algorithms involve operations that
are conditionally applied. Let U be an operation on some set B of the gbits involved
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Table 2.1 Basic quantum circuit operations

Pauli X X:NOTz((]) (1))
. 0
Pauli Y Y= i o0 )
. 1 0
Pauli Z Z = 0 -1 )
1 1
Hadamard H :( 1 -1 )

in a quantum algorithm, and A be one of the other gbits. We can define a new unitary
operation AU (“control-U”’) on the subsystem AB by

ANU|0)uy = |0)|uy and AU |u) = [1)U|u).

This means that U is applied on the B subsystem if and only if the A gbit is [1). An
important example is the controlled not operation AX on two gbits. In the canonical
basis, AX operates by flipping the value the second gbit if the control gbit is |1) and not
changing the value of the second gbit if the control gbit is |0). This makes AX the main
way to introduce control flow in quantum programs.

Universality Most quantum circuits are described using a limited number of unitary
operations. A set of unitary transformations is said to be universal if it has the property
that every unitary transformation can be approximated with arbitrary good precision by
composition and tensors of unitary transformations from the given set. This means that
it suffices to use only transformations taken from a universal set in order to be able to
construct quantum circuits for all possible quantum algorithms.

2.2 Quantum programming languages

There are many proposed quantum programming languages. The reader can find a list-
ing of most of the proposed quantum programming languages in the surveys of Selinger
and Gay [Sel04a, Gay05]. We overview below three quantum programming languages,
chosen to represent three important classes of languages: the low level measurement
calculus, the functional quantum A-calculus and finally the categorical abstract lan-
guage of dagger compact closed categories, which abstracts some important aspects of
quantum mechanics.

2.2.1 The Measurement Calculus

The measurement calculus is a quantum programming language developed around the
idea that quantum circuits can always be described as a special kind of circuit where the
only operations allowed are a unitary transformation on two gbits used to introduce en-
tanglement, one gbit measurements, and one gbit unitary transformations picked from a
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limited set and which can be chosen according to previous measurement results. It was
introduced by Danos et al. [DKPO07] and is based on the one-way model of Raussendorf
and Briegel [RBO1], which introduced the idea of a measurement-based description of
quantum computation. One of the main results obtained is a reduction procedure tak-
ing general measurement calculus programs, called patterns, to a standard form where
the allowed operations are always applied in a specific order. This allows one to study
parallelism in pattern computation, since the standard form, described below, reveals
the structure of dependencies between measurements and quantum operations.

Patterns

For any « € [0, 27], we put

1 i 1
) = 5 (10y+e™1))  1-a) ﬁ(
We denote |+() and |—) respectively by |[+) and |-).
A pattern type is a finite set of gbits {H;,i € I} with two subsets in, Out of /. Let
Xi, Y;, Z; be the usual Pauli operators on gbit i, and M{" be the projector [+.] on gbit i.
The operations on the gbits of a pattern type are called commands. They are of
three kinds:

0) = €|1)).

i. Measurement The measurement commands allow one to measure a gbit with the
projective measurement £ = {M®,I — M“}. All measurements are considered to be
destructive. The measurement result of a such a measurement is called a signal. The
signal values associated to the two projectors are respectively 1 if the first projector is
applied, and O if it is the second projector that is applied. Two signals s and ¢ can be
combined using addition modulo 2 to get a new signal s @ ¢ (sum modulo 2).

ii. Correction One can change the state of an output gbit by applying the Pauli
operators X or Z to it.

iii. Entanglement The entanglement command E;; entangle the gbits i, j of the pat-
tern type by applying to them the controlled-Z operator (denoted AZ).
Signals are used to modify commands as follows:

L R S I U
A pattern consists in a pattern type (Z, In, Out) with a finite command sequence
Ei,...,E,
on it that satisfies the following three conditions:

1. no command depends on signals from gbits not yet measured,

2. no command is applied to a gbit after it has been measured,
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3. no gbit in Out is measured, all other gbits are measured.

It is also assumed that all non-input gbits are initially in the [+) state. We use the
convention that the signal associated to the gbit i is s;.

Example 2.9. As shown in [AL04, DKPO7], the Hadamard operation H can be imple-
mented as the following pattern:

(11,20, (1), 20, [X21" MY Ena).

Suppose that the gbit 1 is in state [+). Since all non-input gbits are assumed to be in
state |+) at the beginning, the E1, command is applied to |[+)|+). The gbit array is left
in state

10y + 11

v
% (10)1+) + 1=
(4= ) + 1)
o (e R S )
N N

1=
= [H)I0) + [-)I1)

ANZ|H)+) = AZ |+)

2 2

The first gbit is then measured in the {|+),|—)} basis. After the measurement, the array
is left either in the state |+)|0) or the |-)|1) state, and the signal s, is respectively set to
1 or 0. The correction command X; is then applied conditionally according to the value
of s1, and the second gbit is left in state |1) = H|+) as required. A similar computation
shows that when the gbit 1 is in the |-) state at the beginning, gbit 2 ends in state
|0) = H|-).

Example 2.10. The controlled-not operation AX is implemented as the pattern
[X41" [Z4]2 211> M3M3 Es4 ExsE 13

Example 2.11. The following is a pattern implementing teleportation [BBC*93] (i.e.
the identity function from one gbit to another): on the gbits labelled 1,2 and 3,

[X312[Z3]" MIMYEs3E

2.2.2 Quantum A-calculus

The A-calculus is a formal language that was introduced in the 1930s by Church and
Kleene and also studied in an equivalent form (combinatory logic) by Curry. As a pro-
gramming language, one of its main distinguishing features is that it is a higher-order
language in which functions can take other functions as arguments. Many variants of
the A-calculus have been studied : with control constructions, with recursion operators,
with probabilistic choices, with stores, etc. The study of A-calculus semantics has led

24



Table 2.2 Quantum A-calculus subtyping rules

A< B A< B

a < a X< X T T 1A < B 1A < 1B
A < By A2 < B Ay < A B < B
A1 ®Ar, <. B1® B> A; o B <t Ay < By

where « is a constant type, X is a type variable.

to the development of many rich fields of informatics such as domain theory and game
semantics.

A first adaptation of the A-calculus to quantum computing was proposed by Maymin
in the 90’s [May96, May97]. Another important contribution was made later by van Ton-
der [vTO04]; it emphasised for the first time the connection between the no-cloning
theorem and the necessity to use quantum variables linearly (without duplication) in
quantum A-calculi. In this thesis, we take as a starting point Selinger and Valiron’s
proposal which was first defined in Valiron’s master’s thesis [Val04] based on earlier
work by Selinger [Sel04b]. We review in what follows the more recent version found
in [SV06a].

Syntax

The quantum A-calculus is designed around the idea of classical control with quantum
store: quantum algorithms are described in a setting where a classical computing device
is allowed to operate on the state of a quantum register using unitary transformations
and quantum measurements.

Following this view, the terms of the quantum A-calculus are defined as follows:

M,N,P :=x| MN | Ax.M | if Pthen M else N | true | false | meas |
new | U | *|{(M,N)|let(x,y) = MinN

where U ranges over unitary transformations and x over variables. The meas constant
is the function which measure a gbit to return the measurement result. The new con-
stant is used to create a new gbit in one of the computational basis state. The variable
x is considered bound in Ax. M. The set of free variables of a term M is denoted by
FV(M). We use M[N/x] to denote substitution in M of a term N for every occurrence
of x € FV(M) when no free variable of N becomes bound. We identify Ax. M and
Ay. M[y/x].
The types of the quantum A-calculus are defined by:

A,B = bool |gbit| X [!1A|A - B|T|A®B.

The type system also involves a subtyping relation defined by the rules given in ta-
ble 2.2.
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Table 2.3 Quantum A-calculus typing rules
A< B A. < B
I''x:Arx: B I'tc: B
I'y,!A+ P: bool I,/ ArM: A Ih,)/ArN: B
I',IL,/ArifPthenMelseN : A
I','A\+M:A—-B I,JAFN:A
I,I),!/A+r MN: B
Ix:ArM: B IIA,)x:ArM: B
TrAxM: A —-B [,IAF Ax.M: "' (A — B)
ILIAFM:1"Ay Iy AR My: 1"Ay —_—
T[0T, 1A F (M, Ma): 7" (A ® Ay) PRt
rl,!AI-MZ !n(A1®A2) Fz,!A,X[Z!nAl,XzZ !nA2|'N:A
o 1A let (xq, x0) = MinN: A

(A, is the type of the constant c¢)

FV(M)N T = 0

The types of constants are defined as follows:

meas: !(gbit —!bool) new: !(bool —o gbit)
true, false: bool U: !(gbit" —o gbit")

A context I' is a function assigning types to variables taken from some finite set,
which is denoted using the usual notation x;: Ty,...,x,: T,. The domain of I is
denoted by |I']. It is convenient to use the notation !T" for x;: T, ..., x,: !T,.

A typing judgement is a triple of the form I' - M: T, where I is a context, M is a
term and T is a type. Valid typing judgements are those derived using the typing rules
are given in table 2.3.

Note that these rules forbid duplication of unknown quantum data, since it is not
possible to derive a typing judgement of the form x: gbit - x ® x: gbit.

Operational semantics

We describe next how quantum programs described as A-calculus terms are executed.
This is done by giving rules telling how to reduce terms to simpler forms of base types.
The reduction relation needs to be probabilistic to be able to deal with measurement
operations. Furthermore, we need to take into account the state of the quantum register
at each reduction step. To see that this is necessary, consider the term

if (meas (U (new 0))) then M else N,

which intuitively should reduce to M or N with different probability distributions de-
pending on the state U|0). The state is modified by the measurement action, and any
further reduction of M or N should be done using this modified register. To formalise
this, we associate a gbit to each free variable of a term as follows: a program state is
atriple [Q, M, L] where
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Table 2.4 Quantum A-calculus reduction rules

[O.N] |7 [Q',N'] [0, M] [P [Q',M']
[Q, (Ax. M)HV] | [Q, M[V/x]] [0, MN] |? [Q', MN"] [0, MV] PO, M'V]
(O, M1] 17 [Q, M{] [0, M>] [P [Q', M)]

[Q. (M, M2)] |7 [Q', (M, M3)] [O. Vi, M)] [P [Q', V1, M})]

[Q,if 0 then M else N] | [Q,N] [0Q,if 1 then M else N] | [Q, M]

[0, P] 1P [Q,P]
[Q,if Pthen M else N] |? [Q, if P’ then M else N]

[Q’ U(le-an)] l [UQ’<P1’~-~’Pn>]

[0, meas g;] LM [[0FQ/|I01QII,01  [Q,meas ¢] LI [[11°Q/I[11Qll, 1]

[Q,new 0] | [Q ®10),0] [Q.new 1] | [0 ®][1),1]

[0, M] P [Q',M']
[0, et (x1,x2) = M in N] |7 [Q, let (x1, x2) = M’ in N]

[Q.let (x1,x0) = V1, Vo) In NI L [Q', N[V /x1, Va/x2]

1. Q astate in the Hilbert space H = (C?)®" for n gbits, n > 0,
2. M is aterm,

3. Lis a partial function assigning variables of M to gbits of Q that is defined on all
free variables,

4. quantum data is used linearly in M, i.e. no variable of type gbit is used more
than once in M.

We can simplify the notation of program states by labeling the variables with gbit
indexes, so that we can denote program states by pairs [Q, M].

The operational semantics of the quantum A-calculus is given by a small-step prob-
abilistic reduction relation described in table 2.4; a call-by-value strategy is adopted by
Selinger and Valiron. An important observation is that the value to which a given term
is reduced depends on the reduction strategy chosen. This happens in all languages
with operations that have side effects, like quantum measurements operations. There
is nothing special in the quantum case in this regard. For example, assuming that x is
a classical integer store holding the value 1, the term (x := x + 1, x) will reduce in a
classical language to either (2,2) or (2, 1) depending on which component is reduced
first.
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2.2.3 Categorical quantum mechanics

Another approach to the problem of providing a structured description of quantum
computation is categorical quantum mechanics. This consists in using concepts from
category theory (which we review briefly below) to create an abstract description of
quantum mechanics where it is possible to express quantum algorithms and protocols.
Abstraction allows one to study other models of quantum mechanics than the usual
Hilbert space model. The proposed abstract categorical language can be interpreted
using mathematical objects other than complex Hilbert spaces, such as sets and rela-
tions, and in turn any protocol or algorithm described in the abstract language can be
interpreted using these objects.

Categories

We begin this review of categorical quantum mechanics by giving a brief overview of
category theory. A more complete account of category theory can be found in [Mac71,
BW99]. Note that the concepts of category theory are also used in game semantics and
in programming language theory in general. The concepts described in what follows
will be used throughout this thesis.

Category theory can be described as a theory of structures, where, in contrast to
model theory where sets and relations are used to describe them, the focus is on the
structure-preserving maps. Instead of defining a particular structure as a set equipped
with various relations (including operations, functions, distinguished elements, etc.)
which satisfy certain conditions or axioms, we define the class of such structures by
imposing certain conditions on the maps between them. Category theorists assume
there is always a minimum amount of relations between these maps to be able to ex-
press more complex constructions. Namely, there should be a notion of composition of
two maps and each structure should have an associated identity map:

Definition 2.12. A category C is a structure consisting of
1. a family of objects Ob(C),
a family of morphisms Mor(C)
two mappings Dom¢ and Codomc from morphisms to objects,

for each object X € Ob(C) a morphism 1x with Dom(1x) = Codom(ly) = X,

A N

a composition operation o which takes two morphisms f and g with Dom(g) =
Codom(f) to a morphism g o f with Dom(g o ) = Dom(f) and Codom(g o f) =
Codom(g).

The composition operator is usually left implicit, writing g f instead of g o f. We
also use the notation f; g for g o f. Equations involving morphisms in a category are
usually represented as diagrams where objects are nodes and morphisms are arrows.
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For example, the composition of two morphisms can be illustrated in this way:

8.

~

Y

X

Some important ideas about structures can be expressed using category theory. For
example, an isomorphism between two objects X and Y is a morphism f: X — Y
for which there is another morphism f~! such that ff~' = 1y and f~'f = 1x. The
important point about this simple definition is that it does not use any knowledge about
the internal structure of X and Y, it uses only the morphisms between the two objects
in order to tell if they are isomorphic or not.

The structure-preserving maps between categories are called functors. A functor
F from C to D is a pair of maps, one sending objects of C to objects of D, and one
sending morphisms homc¢(X, Y) to morphisms homp(F(X), F(Y)) (we usually denote
both by F since the argument type removes any ambiguity); these maps must satisfy
the following conditions:

1. F(lx) = lp(x)
2. if gf is defined, then F(gf) = F(g)F(f).

A contravariant functor F is defined as a functor, but with F(f): F(Y) — F(X) for
f: X — Y,i.e. as a functor that “reverses the arrows”.

A natural transformation « between functors F, G: C, D is a family of morphisms
ay: F(X) — G(X) indexed by the objects of C such that forall f: X —» Y

F(X) —X~ G(X)
F (f)i J{G(f)
F(Y) — G(Y)

A product of two objects A, B of a category C, if it exists, is an object A X B
with two projection morphisms p4 and pg such that for all objects C with a pair of
morphisms fy, fp there is a unique paring morphism (fy, fz) such that

AXB

{fasfB) B

fa I

All products are isomorphic in the sense defined above. We usually choose one rep-
resentative that we call the product of A and B. Note that fixing B in A X B defines a
functor

-xXxB:C—-C.

29



An object T is said to be terminal in a category C if for all objects X there is a
unique morphism tx: X — 7. If C has a terminal object, it is unique up to isomor-
phism.

A Cartesian category C is a category with a terminal object and products. A
Cartesian category is said to be closed if in addition there is a functor

-=>B:C->C
such that there is a bijection (in the category of sets)
A: hom(A X B,C) - hom(A, B= C)
which is natural both in A and C. Note that this is equivalent to saying that

AxB) % 4 xB)—>C

A(g)
AL M poc
for all morphisms f and g.
Cartesian closed categories have a close relationship to logic and A-calculi. This
relation can be summarised in “slogan” form :

Categories Logic A-calculi
Objects Propositions Types
Morphisms Proofs Terms

Composition  Cut-elimination  SB-reduction

This is known as the Curry-Howard-Lambek correspondence, and is the cornerstone
of the applications of category theory in computer science. A detailed explanation of
this correspondence can be found in [LS86].

The last important general categorical concept necessary to abstract quantum me-
chanics categorically is symmetric monoidal categories. These are categories equipped
with an extra tensor operation on objects.

Definition 2.13. A monoidal category (C,®, 1, a,p, A,) is a category C equipped with
a tensor bifunctor ®: C x C — C, a distinguished object I and natural isomorphisms:

axyz: X®Y)®Z - X®(Y®Z) (associativity)
Ax: X®1 — X (left identity) px: 1®X — X (right identity)

such that the following diagrams commute for all objects A, B, C and D.

@A B.CRD @A BaC.D

(A®B)®C)®D ——— (A®(BR®(C)®D ——AR®(B®C)® D)

@ARB,C,D \L lidA ®ap.c.n

(A®B)®(C®D) A®(B®(C®D))

@A,B,C®D

30



@ALB

A®D)®B A®(I®B)

Mﬂ

A®B

The two conditions imposed on the natural isomorphism associated to monoidal
categories are called coherence conditions; they imply that all diagrams constructed
from identity morphisms, @, p and A by composition and tensors are commutative.

Definition 2.14. A symmetric monoidal category is a monoidal category C equipped
with a symmetry natural isomorphism oxy: X® Y — Y ® X subject to the coherence
condition

X®l — ™ ®X

N

A symmetric monoidal category is closed when there is a bijection
A: hom(A® B,C) — hom(A, B — C)

which is natural in A and B. This is similar to the definition of Cartesian closed cate-
gories. Note that we use the notation B — C, which is used in linear logic to denote
linear implication [Gir87], instead of B = C which is used to denote intuitionistic
implication. This usage is natural since symmetric monoidal closed categories and
Cartesian closed categories are respectively models of the multiplicative fragment of
linear logic and the conjontion and implication fragment of intuitionistic logic.

An important class of symmetric monoidal categories is obtained by considering
symmetric monoidal categories equipped with a “dualisation functor”.

Definition 2.15. A compact closed category C is a symmetric monoidal category where
for each object X there is a dual object X*, and two natural transformations

vy I > XX ex: XX > 1,

called the unit and counit, that satisfy the following two coherence conditions:

. 1
x—2 o rex—2% L (xex)eX
l&

X<~ Xol<———— Xo(X'8X)

-1
: 1
X — X el — L X ®(X®X)

|-

X = [®X <~ ——— (X'®X)®X
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A compact closed category is always a symmetric monoidal closed category: we
get this by defining X — Y by X* ® Y. The “+” operator can easily be shown to be a
contravariant functor satisfying (X*)* =~ X.

2.2.4 Abstract quantum mechanics

The main idea in abstract quantum mechanics is to introduce an extra operation 1 in a
symmetric monoidal category.

Definition 2.16. A dagger category is a category equipped with an involutive and
contravariant endofunctor t which is the identity on objects.

This structure suffices to define abstractions of the following basic linear algebraic
concepts:

Definition 2.17.
1. f:X > Yisunitary if fT = f~' (ie. if fTf ' = f1fT=1),
2. f:X — Y is Hermitian if f = f7,
3. f: X — Y is positive if there is another morphism g such that f = g'g.

Definition 2.18. A dagger symmetric monoidal category is a symmetric monoidal cat-
egory with a dagger structure such that 1 preserves the symmetric monoidal structure
coherently, i.e. with (X ® Y)" = X' ® Y' and such that all the coherence isomorphisms
are unitary morphisms.

Definition 2.19. A dagger compact closed monoidal category (also know as strongly
compact closed categories) is a dagger symmetric monoidal category such that

-S> XeX

RN

X'®X
commutes.

Abramsky and Coecke [AC04] have shown that dagger compact closed monoidal
categories with biproducts provide enough structure to describe finite dimensional
quantum mechanics abstractly. The main motivating example is the category of finite
dimensional complex Hilbert spaces and linear maps, which satisfy all the dagger com-
pact closed category axioms. Another interesting example is the category of sets and
relations. It is shown above that important concepts like unitary and Hermitian maps
can be defined in this abstract setup. It is in fact possible to define an abstract version
of the Dirac notation in this categorical language. Scalars are defined as morphisms
s: I — I —in the case of complex Hilbert spaces, it is easy to check that these maps
are in bijection with the complex numbers. Scalars can be abstractly multiplied using
tensor products and left and right identity natural isomorphisms. Kets are abstracted
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using the fact that elements of a complex Hilbert space H are in bijection with maps
C — H,i.e. as abstract maps |¢): I — X in a dagger compact closed category. With the
dagger functor, one can also define abstract bras, inner products, orthogonality, bases,
etc. In the presence of biproducts, it is also possible to define spectral decompositions
and measurements. All this provides enough to express the postulates of quantum me-
chanics. Abramsky and Coecke showed that this is also enough to describe protocols
such as teleportation, entanglement swapping and logic gate teleportation.

Abstract quantum mechanics has been further developed by Selinger in [SVO06a,
Sel07], where an abstract definition of completely positive maps is given, and in more
recent work of Coecke, Pavlovic and Paquette [Coe07, CPO6b, CPO6a] where a new
approach to abstract measurements is developed which allows the use of a graphi-
cal calculus integrating measurement operations without the difficulties of integrating
biproducts into similar graphical calculi for general monoidal categories. Note that
this last approach differs from ours: it is based on the idea that classical data can be
copied and discarded while quantum data cannot. This is abstracted in the categorical
notion of Classical objects, which are objects equipped with morphisms that abstract
the properties of linear maps between Hilbert spaces that copy and discard vectors in
a specified base. Using classical objects, it is possible to make measurement results,
which are classical, interact with quantum data. Classical data is thus “encoded” as
quantum data. In our approach, quantum data is represented as a special kind of prob-
abilistic strategy.

2.3 Game semantics

Game semantics is the study of the interpretation of logical or programming languages
using concepts associated to games like moves, plays and strategies. The central idea in
game semantics is that a system can be described by the various ways that it can interact
with its environment. These interactions can be described as sequences of actions, or
“plays”, in a game. Various types of systems can be described by imposing various
constraints to these interactions. The roots of this approach are in the work made by
logicians in the 50’s and 60’s to create interpretations of classical and intuitionistic
logics in terms of games. In the 90’s we saw a surge in applications of this general idea
in the study of many logical systems and programming languages [Bla92, AIM94,
AJ94, AIM94, HO00, AM99].

The aim of this thesis is to adapt game semantics ideas in a way appropriate to
construct interpretations for quantum programming languages. In order to be able to
represent quantum operations like measurements which give probability distributions
on the measurement results, we need to work with probabilistic strategies. We end this
chapter by a review of the basic definitions and facts of probabilistic game semantics,
as presented in [DHO02].

2.3.1 Arenas

The basic notion used in most of game semantics is the arena. Intuitively, it is the
specification of the rules of interaction between the system and the environment where
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both agents can perform actions, or moves, taken from a specified set. The roles of the
system and the environment are usually played by two players which are respectively
named Player and Opponent. The choice of these names, widely used in the literature,
do not indicate that the two agents are in competition and that one of them could win;
we care only about the interactions between the two agents, and hence the name “arena”
is used instead of the name “game” to indicate the absence of rewards or of winning
conditions.

Definition 2.20. An arena A is a triple (M4, Aa,F4) where My is a set of moves, the
function
Aa: My — {0, P} x {Q, A} x {[, N}

is a labeling which assigns moves to the two players Opponent and Player, and tells
us which moves are Questions and which are Answers, and whether they are Initial or
Noninitial moves, and finally FAC M4 X My is a relation, called the enabling relation,
such that

(A1) ifa vy b, then ASP(a) # AQP (), A3 (a) # A22(b),
(A2) if/lzN(a) =1, then A4(a) = 0OQ)],
(A3) ifar band A2 (b) = A then 23 (a) = Q,

where the functions /ISP, /ISA and /li/;‘ are A4 composed with the projections on the sets
{O,P}, {Q, A} and {I,N}.

We use the convention that M/’f , where X is some list of superscripts taken from
the set of move labels {O,P,Q, A,I, N} denote the set of moves labeled with these
labels. Moves in an arena are thus of various types, and the constraints on the enabling
relation 4 limit the possible interactions in the arena by limiting which moves can be
made at a certain point given the past interactions. The condition (A1) forces that only
Player moves enable Opponent moves and vice versa, (A2) asks for all initial moves to
be questions by Opponent and finally (A3) says that answers can only be enabled by
questions.

2.3.2 Plays and threads

Interactions between Opponent and Players are described by sequences of moves. A
play in A is a sequence of moves s € M. This does not take into account the enabling
relation; we define a justified play to be a play where each occurrence of a non-initial
move b has a pointer to a previous occurrence of a move a with a +4 b. We finally
need to enforce alternation of the two players. A legal play is a justified play where
Opponent and Player alternate; we denote the set of legal plays in A by L. Note that
because all initial moves are Opponent moves, Opponent is always making the first
move. The sets of odd and even length legal plays are respectively denoted by .Ezdd
and L.

Example 2.21. The bool arena is defined as follows:
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1. Myoat =1{7,0, 1}
2. Apot(?) = (0,Q, 1) and Apooi(0) = Apoar(1) = (P, A, N)
3. ? Fboat 0, 1
The legal plays in bool are those of the form
&,??b, ...20,7, 20D .. 2Dy,

where b € {0, 1}. In these plays, each by is justified by the preceding occurrence of the
7 move.

Example 2.22. The empty arena / is the arena with no moves at all. The only legal
play in [ is the empty play &.

Nothing in the various restrictions imposed on justified and on legal plays forbid
the case where there are many initial moves. It is possible for Opponent to start many
interactions in parallel by making many initial moves. Formally, suppose sa € Ly4.
Starting from a and following the justification pointers will always lead to an occur-
rence of an initial move b, which we call the hereditary justifier of ¢ in sa. We can
see that every legal play will be partitioned in subplays, each one consisting of all oc-
currences of moves hereditarily justified by a given initial move. These subplays are
called threads. The current thread of a legal play sa ending with an opponent move,
denoted by [sa], is the thread of sa where a occurs. If sa ends with a Player move,
the current thread is then defined by [s]a. We want the current thread to be a legal
play, so it is necessary to impose an extra condition on legal plays: a legal play s is
well-threaded if for every subplay fa ending with a Player move, the justifier of a is
in [f]. In a well-threaded play, player always plays in the last thread where Opponent
played.

2.3.3 Operations on arenas

In game semantics, complex types obtained by type operations must correspond to
arenas constructed by corresponding operations. Given arenas A, B, their product A©OB
is defined by

o Muop = My + Mp (disjoint union)
o Asop = [Aa, Ap] (copairing)
® Mmbtpppniffmry normtipgn.

The product arena A © B is intuitively understood as the arena where at each of Op-
ponent’s turns she can choose to play a move in either A or B, and where Player must
answer in the last component where Opponent played.

The linear arrow operation A — B is defined similarly:

o Ms.p=My+ Mg
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—oP —IN
o Aaon = [(Ay AN Ty, A5
o mrpogniffmiynormignordy(n)=ANm) =1

where Z?P inverts the roles of the two players and ZLN makes all moves of A noninitial.
This time, after Opponent makes an initial move in B, at each of his turns Player can
choose to play either one of his moves in B or an Opponent move in A.

The empty arena I has important properties with respect to arena operations:

AI=10A=A
I oA=A

2.3.4 Probabilistic strategies

Given a legal play s in an arena A, let nexts(s) = {a € My|sa € L4} be the set of all
moves that can be legally made after the play s.

Definition 2.23. A probabilistic strategy for Player is a function o: L3 — [0, 1]
such that

(S1) o(e) =1

(SZ) O-(S) 2 Zbenext(m) O-(Sab)

The set of traces of a strategy o in A is the set of even length legal plays which are
assigned a non-zero probability by o it is denoted 7. A strategy o is deterministic
if o(s)=1forall s € 7.

It is possible to describe a probabilistic strategy o in conditional form:

o(sab)
a(s)

The probability (b | sa) is the probability of Player choosing to play b after the play
sa. We say that o is total if for all sa € £4 we have that

Z o |sa)=1

benext(sa)

ob| sa) =

Composition of strategies is the way interactions between parts of a program are
encoded in game semantics. Given two strategies 0: A — Band 7: B — C, we define
anew strategy o; 7: A —o C obtained by letting o~ and 7 “interact” on B. Before giving
the definition of composition, it is necessary to formalise this notion of interaction.

The set of interactions for A, B, C is

Tape={ue(Ms+Mp+Mc) | ulap € Laop, tlpc € Lp—c, tlac € La—oc)

where u|4p is the sub sequence of u obtained by deleting the moves of C, and similarly
for u|pc. The case of u|ac is a bit different because deleting from u the moves of B and
their associated pointers might leave the moves of A or C that are justified by B-moves
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without justifiers. In this case, we define the justifiers of u|4¢ to be as follows: a move
a in C justified by a move b in B will be justified by the first move of either A or C we
get to by following back the justification pointers from a in u.

The set of witnesses wit(s) of s € L4 in an interaction Z4 ¢ is the set of
interactions u € J 4 p ¢ such that ulsc = .

The composition of two strategies 0: A —o Band 7: B —o C can now be defined as
follows:

[o;T](s) = Z o (ulap)T(ulpc).
uewit(s)

The identity strategy (or so-called “copycat strategy”) id4: A — A is neutral with

respect to composition. A typical play is as follows:

A LAr
ap
aj
a
a

Formally, the identity strategy is defined as the deterministic strategy with trace
T(lA(S)) = {S S LAI‘OAr | VS, EEVen S. S,lA, = S,|Ar} .

Using all the structure defined so far it is possible to define the category PStrat of
arenas and probabilistic strategies. Taking arenas as objects, a morphism A — B is
a strategy in A —o B. Composition of strategies is the needed composition, with the
identity strategies as identity morphisms. It is associative, and it is shown in [DHO02]
that probabilistic strategies are closed under composition.

This category is also symmetric monoidal. The operation © is a tensor product,
which acts on morphisms as follows. Given 0: A — Cand 7: B — D and s €

(AoB)-(aoB) WE st
[0 ©7](s) = 0(sla-c)T(slc—D)-

All coherence isomorphisms are easily defined using variants of the copycat strategy.

2.3.5 Strategies and threads

Threads have an important role in game semantics as a way to characterize the strate-
gies that encode programs with side-effects, like stores. This is achieved by forcing
Player to use only the limited information available in the current thread instead of us-
ing all the information that can be extracted from the whole previous plays, including
moves made in other threads.

A strategy o is well-threaded if 7, consists only of well-threaded plays. Note
that this condition forces Player to answer in the last thread where Opponent played.
Given two well-threaded plays sab € L£4°" and ta € L5 with [sa] = [ta], we define
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match(sab, ta) to be the unique legal play rab with b justified as in [sa]. A well-
threaded strategy o is said to be thread independent if sab € 7, t € T, a € next(t)
and [sa] = [ta] implies that

o(sab)  o((match(sab, ta))
o(s) o (1)

The meaning of this condition is that if Player plays according to o, Player chooses his
answers with probabilities that only depend on the current thread, i.e. o(b | sa) = o(b |
ta).
The diagonal strategy A4: A — A © A is defined as the deterministic strategy with
trace set
{s € L% on, | Vs B 5.5"|4, € ida, AS |4, € idA,,}.

This is similar to the definition of the identity strategy: A instructs Player to use copying
strategies between A and its two copies A; and A,. Possible conflicts in A are resolved
by separating in different threads moves made according to the left or the right copy
plays. There is also a unique strategy ¢4 —o I, namely the trivial strategy with trace
{e}.

The pairing of two thread independent strategies 0: A — Band 7: A — C is
defined by

(O, T)=Ap;00T

Thus when Player plays using the pair strategy (o, 7), he plays using o after an initial
move in B, and using 7 after an initial move in C.

For each arena A, (A, A4, O4) is a comonoid, meaning that the following two dia-
grams commute:

(AOA)OA—— > AG(AQA)
A,Oidy T TidA OAp
AGOA AGA
A
A AoT<2"1 poa -2 joa—M o4
\AT/
A

The following proposition is an important fact about thread independent strategies,
proved in [Har99]:

Proposition 2.24. A strategy o : A — B is thread independent if and only if o is a
comonoid homomorphism for the comonoid, that is, if for all A and B the following
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commutes:

A
A A0A A

| ik

B——BOB
Ap

1

It is a known fact in category theory[Jac94] that the last proposition implies that
the restriction of PStrat to thread independent strategies is a Cartesian closed category.
This is based on the fact that we can use pairing as defined above to get products. Note
that projections strategies are defined as copying strategies:

s (A © B)——A g A O© B B
aj bl
a bl
a bz
a
by
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Chapter 3

Quantum games and strategies

3.1 Arenas for quantum systems

The central objective of this thesis is to develop a new model for quantum programming
languages by adapting the concepts of game semantics to quantum computation. The
core of game semantics is the idea of identifying states of a system with the processes
by which the environment gets information about the system. These processes are
described as sequences of actions performed by the environment and the system. The
most basic systems are described as simple “question-answer” interactions.

To adapt game semantics to quantum systems, it is necessary to identify the kind of
actions that can be performed and the find appropriate restrictions on the interactions
to make them compatible with quantum mechanics. We take the following extended
form of the “slogan” correspondence describing game semantics to physical systems
as a general guideline:

A-calculi Games Physics
Types Arenas State spaces
Terms Strategies Dynamics

Reduction Composition of strategies Composition of dynamics

This guideline is formulated with general physical systems in mind, but here we focus
on the case of quantum physical systems. Following the correspondence, a quantum
state should be described by the way Player, incarnating the physical system, interacts
with Opponent, which has the role of the environment, when they play in some ap-
propriate arena. More specifically, if Opponent asks for information about the state of
a quantum system, Player should answer with some information about this state. We
need to specify the kind of interactions that they can have in this process.

A possibility is to identify knowledge of the state of a quantum system to knowl-
edge of the density matrix p describing it, as it is done in some of the work on quantum
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knowledge theory [vdMPO3]. In that case, a typical play in the arena describing a
quantum system would be of the form ?p. This conception of quantum knowledge is
criticised in [DPO5, D’HOS5], where it is argued that an agent may get knowledge about
the state of a quantum system in the following ways:

1. if the agent prepares the system in a known state,
2. if the agent measures the state of the system,
3. if information about the state of the system is communicated to the agent.

We adopt this point of view and adapt it to the context of game semantics. We consider
Opponent can only be given information about a quantum system under the control of
Player, knowledge that Player can only get by measuring or preparing the system. This
means that the possible answers to such a question must correspond to the measurement
outcomes.

3.1.1 Quantum Games

The central new structure introduced this thesis is a quantum game which is a variant of
the games used in the field of game semantics. There is an emerging field of research
developing around the idea of quantum games. To understand how the work presented
in this thesis differs from what is done in the quantum game field, we present an outline
of the latter.

Quantum games with payoffs are the central object of study of quantum game the-
ory. They are presented as generalisation of classical von Neumann games [MvN47,
ORY4]. A classical two player von Neumann game G can be described as a pair of set
of strategies S 4 and S p, one for each player A and B, together with a payoff function

MZSAXSB%RXR.

If both A and B chose their strategies s4 and sp, we get an element of S4 X S g, and
the associated tuple M(s4, sp) gives the payoff of each player when they play using the
chosen strategies. A Nash equilibrium of G is a pair of strategies (s4, sp) such that no
player can improve his or her payoff by choosing another strategy if the other player
keeps using the same strategy. The von Neumann theorem says that in zero-sum two
players games (where the payoff of one player is opposite to the payoff of the other)
there is always a Nash equilibrium of probabilistic strategies.

The focus of the research in quantum game theory is to study Nash equilibria when
strategies are described as quantum states and chosen using quantum operations. A typ-
ical two player quantum game starts with some fixed state p in some complex Hilbert
space Hy ® Hp, where A and B are two quantum systems associated to two players,
and comes equipped with privileged orthonormal bases |s4) and |sp). The elements of
these bases are thought as the possible strategies for A and B. Each player chooses a
strategy using some quantum operations &4 and Eg on the associated quantum system.
These operations are taken from a predefined set. Finally, the state [E4 ® Eg] (o) is
measured with the projective measurement {|s455){s45p|}; the value observed is then
used to determine the payoff of each player.
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This scheme can be seen as a generalisation of the classical von Neumann games,
Consider a classical game G as above for the case of two players A and B. We suppose
that the players choose strategies in S4 and Sp by applying some permutations m4
and g of S4 and Sp to some fixed strategies s4 and sp. The chosen strategies are
thus m4(s4) and mp(sp). Since the players can chose among all permutations, they
can pick any strategies they want. Described in this way, the game G can be put in
“quantum form” as follows. Let H4 and Hp be the Hilbert spaces spanned by S 4
and S p respectively (we assume there is a finite number of strategies for each player).
The available strategies correspond to base vectors |s4) € Hs and |sg) € Hp and thus
instead of using permutations, the players use the corresponding permutation matrices.
This means that to select a strategy player A applies a permutation matrix My, which
selects the strategy corresponding to the state |s;) = My, |sa). To determine the payoffs,

one has to measure the state (”s; ® M, B’) |sasp) using the projectors onto the bases
[sa), s4 € Sa and |sp), sp € Sp and associate the payoff M(sa, sg) when s4 and sp
are observed. To represent a probabilistic choice of strategy, one can use the quantum
operations obtained by convex combinations of the permutation operations above, i.e.
superoperators of the form
&p) = ) 7Py
54

where pg, € [0,1] and 3 5, Ps, = 1. In general quantum games, the starting state is
allowed to be an entangled state over |p), the permutation matrices are allowed to be
any quantum operation (in most of the literature unitary operations are used) and the
measurement results can be any quantum measurements. Variants of known classical
games, like the prisoner’s dilemma, have been studied to determine their Nash equi-
libriums and compare them to the classical equilibriums. These are constructed using
various schemes which allow using other quantum operations than the permutations by
allowing the starting state to be an entangled state.

It was shown first in [Mey99, Mey00, EWL99] that there are simple games where
there are new Nash equilibriums when the players use quantum strategies that are not
present when they use probabilistic strategies. In fact, Mayer proved an analogue to
von Neumann’s theorem for quantum games. Recent work developed these ideas by
investigating various quantum analogues of classical matrix games and using quantum
games in quantum information and complexity theory [CHTWO04, GW07]. While these
results are interesting, they do not provide the framework needed to develop a quantum
analogue of classical arenas as described in the first section of this chapter. This is
because matrix games hide the detailed interactions occurring when the players use
their chosen strategies. There is also a more profound conceptual problem with the
approach used in quantum game theory: the choice of a strategy in a quantum game as
described above is done by applying a quantum operation on a state. This is described
as a “quantum strategy” where probabilistic choices are generalised, but, since quantum
games can be seen as matrix games, these “quantum choices” amount in fact to classical
probabilistic choices in a set of quantum operations. It is possible to make this a general
principle: games can be played with quantum states and with the possibility of using
quantum operations on these states, but the only way a player can make a decision about
his or her next next move using information about a quantum state is by measuring it
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and using the measurement result classically. The quantum game concept developed in
this thesis follows this principle.

This view of quantum games or interactions is a good way to understand a cen-
tral difficulty encountered when studying higher-order languages : as pointed out by
Selinger [Sel04b], reasonable attempts to find a closed monoidal category extending the
category of superoperators where one can define interpretations of higher-order quan-
tum programming languages fail. The above principle may help to understand why
this is the case. Consider the core defining property of symmetric monoidal-closed
categories: the adjunction

XY —>Z

XY —oZ
In the categories used to define denotational semantics of classical programming lan-
guages, this adjunction property can be understood as saying that there is an object
Y —o Z that can be used to define a parametrised family of terms over some other ob-
ject X, and that the parameter can always be also thought of as an argument in a term
X®Y — Z. To apply the term corresponding to a certain parameter in X, one must first
determine this parameter.

In the quantum case such a parametrisation should be a way to use a state to choose
a quantum operation. If we follow the principle proposed above, this must be done
by measuring the parameter state in X and using the measurement result to choose the
quantum operation ¥ — Z. If such a process describe an adjunct, has to correspond
to a quantum operation X ® ¥ — Z. If we consider the quantum parametrisation to be
given by a family of superoperators &,,: SD(Y) — SD(Z), with &,,(p) = X Emkajnk
and indexed with the measurement results of a generalized measurement M = {M,,}
over X, the resulting operation X ® ¥ — Z willmap p € SD(X ® Y) to

Z (M, ® Eni)p (M}, ®E],).
m

Since not every superoperator X ® ¥ — Z can be written in this last form, we cannot
hope to have the desired general correspondence. This can also be explained by the
fact that in X ® ¥ — Z the parameter X and the argument Y can be entangled in the
quantum case, while they are independentin X — Y —o Z.

3.2 Arenas for isolated quantum systems

We proceed in what follows to the formalisation of the ideas described in section 3.1.
We begin by considering simple isolated quantum systems described by a complex
Hilbert space H. Starting from an arena as defined in section 2.3, we need to add H
to the structure. We also need to add restrictions on the enabling relations so that the
answers to a quantum question can be used as measurement outcomes.

Definition 3.1. Anisolated quantum system arena (IQSA) A is an arena |A| = (M4, A, Fa)
together with an associated Hilbert space Hy such that for all g € MS the number of
enabled moves | {a | q F4 a} | is dim(H}y).
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The arena |A| is called the underlying arena of the IQSA A. A quantum play in
an IQSA A is a play in |A| together with, for each occurrence of a quantum question ¢,
a projective measurement ¥, = {PZ | g Fa a}. We denote a quantum play as a regular
play where we replace the quantum questions by their associated measurements, for
example:

quaquzaz .
If there are many occurrences of a question g, we refer to the nth occurrence with g[n].

Given a quantum play s, the play of |A| obtained by forgetting the associated quan-
tum measurements is the underlying play |s|. For an IQSA A, the set of legal quantum
plays is

L4 ={s| is aquantum play and |s| € L} .
Example 3.2. The IQSA gbit describing the possible states of a gbit is defined as
follows. The underlying arena is

QOI _ APN _ .
o MO0 = 2}, MATY = (0, 1);

e 7+ 1,7+0.

and H, is taken to be C2. Some possible quantum plays are

st ={[0]o, [1]1}2

52 ={[+]o, [-]1}-1

53 ={[0]o, [111}20{[+]o, [~ 11 }-1
54 ={00, 11}, 1

Note that the underlying plays of quantum plays in gbit are plays of bool.

Example 3.3. Given any Hilbert space H we define a IQSA [H] in a similar way as the
definition of the IQSA qbit, but using in general 0O, . .., dim(H)— 1 as possible answers.
When dim(H) = 2, we will also use the name gbit for the IQSA [H]. In the case of the
trivial Hilbert space H = 0, we adopt the convention that [0] is the empty arena I.

The special case C is important. In this IQSA, there is only one possible complete
projective measurement = {Ip}. There is also only one possible answer, 0.

3.3 Quantum strategies for isolated quantum arenas

In the last section we identified the kind of actions occurring in the interaction between
a quantum system and an environment extracting information from it. The next step is
to identify the strategies that describe quantum states.

When a quantum system is in a certain state, for each quantum measurement there
is a probability distribution over the measurement outcomes. We thus need to begin by
providing a way to allow the possible interactions to describe this distribution.

Definition 3.4. A probabilistic strategy o in a IQSA A is defined as a function
o LT - [0,1]

such that
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1. o) =1

2. O-(S) 2 ZbenextA(sa) o'(sab)

A probabilistic strategy of a quantum arena A can be viewed as a probabilistic
strategy for |A| and vice versa.

We can now define a probabilistic strategy in the IQSA [H] that corresponds to a
given state p.

Definition 3.5. Let p be a density matrix over H. The probabilistic strategy [p] in [H]
associated to p is defined by

1. [ple) =1
2. [plPopyms - .. Poma) = tr (P PP P

We need to check that [p] is a probabilistic strategy. The first condition of the
definition is automatically verified. The second condition is also satisfied: let sPm €
L‘E‘}’ﬁ“. We have that

DT ety = Y w(PLPIT PP PP

menext(sP7) m: m

? n—1 1 201 ?n—1
- tr[(z Pi]P,,!:‘l L ppptll L plnl]

i

Il
[l

I.(P?[n—l] . P?[HPP;[,” . P?[n—l])

My thm ST My

= [p1(s).

The probability of Player answering m to the question P asked after a quantum
play s = P?mml Ce Pq[n]m,, is given by

[p] (sPom) 1T (P PP ;1)

e [P0 = = =ty

where p; is the subdensity matrix P,?,H’] .. PZ,[ll]psP,Z,[ll] . PZ,E:I].
This makes the strategies [p] thread dependent. To see this, consider for example
how the strategy [|+){+|] evaluates on the two quantum plays:

{[0lo, [111}, 0{[0]o, [1]:}, 0
{[Olo, [111} 1{[Oo, [11:}, O

The probability of answering O at the end of the first play is 1 while it is O in the second
play. The strategy dictates the use of a different probability distribution in the second
thread according to the answer given in the first one.

Note also that [p] is total because tr(p) = 1, and thus

Pms
Zo-(mlﬂ%)=2%=l

m
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Is there a density matrix p associated to a probabilistic strategy for a IQSA? It
is not the case in general. Consider for example any probabilistic strategy o in the
IQSA H for which o(m | $5) is the uniform distribution with value 1/dim(H) for
all m. The existence of such examples is due to the fact that we do not impose any
special restrictions on probabilistic strategies. We now define a restricted family of
probabilistic strategies that correspond to quantum states.

Definition 3.6. A probabilistic strategy for a IQSA H is called a quantum strategy if
the following three conditions hold

1. if sPym, sPim € Ly and an = P;;, then o(m | sP9) = o(m | sP’9)

2. for any three projective measurements s, P, and Py with P;,Z] J_P,’,;Z and P}, =

P,’,Z] + P;,;Z we have that o(m | sP2) = o(my | sP}) + o (iz | sPY)

3. for every projective measurement Py such that ¥, P!, = Iy we have o(m |
sPy) =1
Lemma 3.7. Let o be a total quantum strategy in [H], with dim(H) > 2, s be a
quantum play. The function p: P(H) — [0, 1] which sends P € P(H) to
p(P) = o(m | sP),

where P+ is any complete projective measurement with P}, = P, satisfies the conditions
of Gleason’s theorem (proposition 2.4).

Proof. Fix some quantum play s. By the first condition of the definition of quantum
strategy, p is well-defined.
Let PLQ, P,Q € P(H). By definition,

p(P+ Q) =o(m| sP»)

for some P, with P!, = P + Q.

It is always possible to define a projective measurement #, by splitting P} into
two. If the rank of P + Q is 0 or 1, we simply take P, = P». If the rank of P + Q is
strictly greater that 1, set m; = m. In that case, there must be a move m; with PZ,LZ =0.
Let P, be defined by P;) = P, P,. = Q and P,}, = P., for m’ # my, my. It then follows

myp
from the second condition of the definition of quantum strategy that

pP) + p(Q) = o(my | sP) + o(my | sP3) = o(m | sP2) = p(P + Q)

To evaluate p([), the last condition of the definition of quantum strategy gives us
that for any #, with P, = 1

p) = o(m|sPy) =1,
so p satisfies the conditions of Gleason’s theorem. O

This lemma implies that when dim(H) > 2, there is a quantum state p, for each
even length quantum play s in [H].

46



Lemma 3.8. For a quantum strategy o in H, with dim(H) > 2, we have that
o(m| sPy) =tr (P; ps)

Since the defining conditions of quantum strategies do not impose any constraints
on the relation between threads, these p; need not be related to one another in any
special way. The strategies [p] satisfy the following extra condition.

Definition 3.9. Suppose dim(H) > 2. A total quantum strategy o on H is said to be
physically realisable if for all quantum plays sPym € o we have that

Pr?npsp;

where py is the density matrix associated to s by lemma 3.7.

Theorem 3.10. For every total physically realisable quantum strategy o on a IQSA
[H], with dim(H) > 2, there is a density matrix p such that [p] = 0.

Proof. For each play s = Poyyymy . .. Popmmn € Lia, the strategy o determines a den-
sity matrix p; which satisfies

o (my1 | SP?[nH]) =1t (P?J,’,ljl]ps) .
Taking p = p,, an easy induction on the length of s shows that

po = P PPN pil,
and thus that
o(s) = tr (P PIpPI .. PM) = [p](s).

my

3.3.1 Consistent histories

In addition to quantum knowledge theory and probabilistic game semantics, the def-
inition of quantum strategies given above was inspired by an alternative approach to
quantum mechanics know as quantum consistent histories theory [Gri84, Omn88a,
GMHO93]. The main goal of this theory is to describe a quantum system using se-
quences of measured properties of the system. Each such history of the system must
be assigned a weight in such a way that classical reasoning using probabilities is valid.
The problem is to identify on which sets of histories this is possible. We summarize
the usual solution to this problem in what follows. The central idea is that a measure of
compatibility between histories is introduced and used to define the compatible ones.

Definition 3.11. Let H be a Hilbert space. A decoherence functional is a map
d: P(H)xP(H) — P(H)

such that for all P, P’, Q € P(H)
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1. d(P,P)eRandd(P,P) >0

2. d(P,Q) = d(Q., P)

3. dly,Iy) =1and d(0,P) =0

4. If PLP', thend(P® P',Q) =d(P,Q) +d(P’, Q)

Properties of quantum systems are usually described using projectors. We call a
projector
P® - -®P,cPH®---QH)

a quantum history in H. Given a density matrix p € D(H), we can define a decoher-
ence functional on P(H® - - - ® H) by

dp(Pl®"'®Pn’Ql®"'®Qn)=tr(Pn'~~P1le~-‘Qn)'

The sets of histories where classical reasoning on probabilities is valid can be defined
as follows:

Definition 3.12. Let H be a Hilbert space and d be a decoherence functional on P(H).
A subset S C P(H) is consistent with respect to d if p(P) = d(P, P) defines a probability
distribution on S.

The central result of the theory is a characterisation of consistent sets (explained
for example in [Gri03])

Proposition 3.13. S C P(H) is consistent for a decoherence functional d if and only if
forall P,Q € S with P+ Q Re(d(P, Q)) = 0.

Note that consistent sets of quantum histories are defined using the stronger condi-
tion d(P, Q) = 0 for any two orthogonal quantum histories P and Q.

Histories are closely related to plays. It is straightforward to associate a decoher-
ence functional p to each strategy [p] in [H]. Given a quantum play s = Poj1ymy . . . Popmiy,
in £5*", we have a quantum history

Plg...qpIM

m my

By construction we have that

Z Pll®-.eP =]

The strategy [p] induces a probability distribution on the set of quantum histories:

p(P;,[ll] R ®P;;1[’}7]) = O'(Squml .. .P‘][n]mn) .

3.4 General quantum arenas

Up to this point, we have studied isolated quantum systems arenas in order to under-
stand how quantum states can be represented as strategies. Since our goal is to be able
to study quantum types using quantum arenas, we need to extend the basic classical
arena operations © and —o to quantum arenas.
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3.4.1 Quantum arenas

The definition of an IQSA A is simply to add a Hilbert space H, to the specification
of an arena which acts as the space where the projective measurements are made. In a
general arena involving many quantum systems, the projective measurements are per-
formed in different Hilbert spaces. Hence we need to extend definition 3.1 as follows:

Definition 3.14. A quantum arena A is an arena (Mg, Fa, A4) together with for each
ac MS a Hilbert space H, such that |{b | a +4 b}| = dim(H,)

We can see IQSA as special cases of quantum arenas where the same Hilbert space
is associated to every quantum question. Quantum plays and probabilistic strategies in
quantum arenas are defined in the same manner as for IQSA, except that the projective
measurements $, associated to a question a are taken in H,.

3.4.2 Products of quantum arenas

Definition 3.15. Given two quantum arenas A and B, A ® B is the quantum arena with
|A| © |B| as underlying arena and where the Hilbert space H, for a € M/?@B is taken to

be the Hilbert space H, in the component A or B where a comes from.

The ® operation extends to morphisms in the same way as the probabilistic case
explained in section 2.3.4.

Let’s examine the anatomy of a quantum play in a quantum arena of the form A®B.
The projective measurement associated to each question is taken on the component
where the question is asked. A typical play in [H4] © [Hp] is of the form

[H4] o [Hp]

Py
my
Poan
m}
Pou2)
m;

This play involve the two systems A and B independently. We can look at these mea-
surements in the complex Hilbert space H4 ® Hp describing the combination of the two
systems. It is clear that the measurements occurring in quantum plays of [Hs] © [Hp]
correspond to measurements of one of the two forms

{Pu ®1p | Py € P(Hy)}  or {14 ® Qs | Qv € P(Hp)).

By comparison, in the quantum arena [H4 ® Hg], Opponent can use a projective mea-
surement with any projectors on Hy ® Hp. This allows her to choose the projections
onto the Bell states, which is not possible in the case of H4 © Hp.
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Given a quantum state p4 © pg over Hy ® Hg, we can define a strategy [p4 ® pp] in
[H4] © [Hp] as we did in the case of a IQSA [H]. Given a play s = Py . .. Popn)in,
where the questions ?[k] and their associated answers my can be from either the A or
the B component, we set

[oa ® ps1(s) = tr (P ... P (pa @ pp) PILT ... PA).

Note that in this expression it is possible to use a state p over H4 ® Hg which is not a
tensor product p4 ® pp.

The difference between [H4]©[Hg] and [H4 ® Hg] is important, as the limitations in
the allowed measurements in the first case make it an unsuitable candidate to represent
joint quantum systems. This is because there are families of states in H4 ® Hp which
cannot be distinguished by measurements of the form allowed in [H4] © [Hp] together
with classical processing of the results. Moreover, the states in these families can even
be chosen to be separated. Such an example is the following set of orthogonal states in
CeC:

D eIl) 0) ® (10) + (1)) 10) ® (10) = 1))
12y (1) +12)) 12) @ (I1) = 12)) (1) +12)) ® |0)
(1) = 12)) ®|0) 10y + 1) ®2) 10y =) ®[2)

where |0), |1) and |2) is an orthonormal basis of C>. This example is discussed in
the paper [BDF*99], where it is proved that even with classical communication, two
parties cannot distinguish these states with certainty using separate measurements on
each component of the system. The paper gives other examples of such phenomena.

We introduce another product operation on quantum arenas where any question #,
over a tensor product space can be asked.

Definition 3.16. Let A and B be two quantum arenas. The quantum arena A ® B is
defined by

1. Magp = {(a,b) € Mg X Mp | As(a) = (D)}
2. Aagp ((a,b)) = Aa(a) = A5(b)

3. Huyp = H, ® Hy, for (a,b) € MY,

4. (a1,by) Fagp (a2, b2) ifay + by and ay + by

It is easy to see that in particular [H4|®[Hp] = [Hs ® Hg]. To simplify the notation,
we will denote the measurement results (14, mp) in quantum arenas of the form A ® B
by m*m®. When we do not need to refer to the measurement results in each component,
a generic tuple of measurement results is denoted by .

3.4.3 The linear arrow quantum arena

We now turn to the other basic arena operation which is used to represent quantum
operations as strategies.
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Definition 3.17. Given two quantum arenas A, B, A —o B is the quantum arena with
|A| —o |B| as underlying arena and where, for m € M/?w p Hun is defined to be H,, in the
component A or B where a comes from.

A typical single-threaded play in [H4] — [Hy4] is as follows:

[H4l

[H5]

In this play, Opponent wants to know the result of measuring the output with the pro-
jective measurement P,. Player answers this by asking Opponent to measure the input
state with the projective measurements Py, . .., Poy. Player can then use the mea-
surement results to decide how to answer to Opponent’s initial question.

Important classes of quantum operations can be defined in the quantum arena

[Ha] — [Hp].
Example 3.18. A unitary transformation U: H — H can be represented as a total
deterministic strategy [U]: H —o H where Player plays following this pattern:
[U]
[H] ——I[H,]
P

r

P,

m

where
Py, = UP,U' ={UP,U" | m=0...dimH,) - 1}.

We can check that the proposed strategies for unitary transformations behave in the
proper way: if we compose [U]: H —o H with a state strategy [p]: I —o H, what we
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get is the state strategy [UpU]:
|UpUT| Pom) = (P, (UpUT) P,y)
=t ((Pul)p(PuU)')
= [Ullpl(#2m)

Example 3.19. Let [H,] and [Hp] be two Hilbert spaces arenas. The partial trace strat-
egy [tr®] is defined as the deterministic, total and thread independent strategy which
assigns weight 1 to single threaded plays of the form

[tr’]

[Hal ® [Hp] [Hal
P
7,
mAm®
e

where P, = {(P;"nA ® I)}s. Note that, since the measurement results in [H4] ® [Hg] must
be of the form m*m?, we can fix arbitrarily an index m? in the indexing of the elements
of £’. When this strategy is composed with a state strategy [p], the resulting strategy
is the state strategy [tr® p] associated with the reduced density matrix. Let |j) be an
orthonormal basis of Hz. We have that

)= S

m

=tr(P,x ®Ip)
= tr (PmA ® [Z |j><j|]p]
J
=tr (PmA Z<j|p|j>]
J

=1r (Pm/\ trf (p))
= e @] (o)

Note that the projection strategies on [H4] © [Hg] also compute the trace of p when
composed with a strategy [p]: I —o [Hu] © [Hg]. For the projection m4 on the first
component:

[Hal © [Hp] ——=—s[Hy]
P
P
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we have that m4[p] = [trB(p)].

Example 3.20. The effect of performing a projective measurement Q on a space H
can also be represented with a strategy [@Q] : [H] — [H]. Player plays according to the
following pattern:

Q]

[H] ——[H]
P
Q
m
P
my
np

The state after the measurement Q is performed is Q(p) — we abuse the notation
and use Q to denote both the set of projectors {Q,,} and the associated superoperator
defined by

p Z O Q-
Composing with a strategy [p] in [ — [H], we get that

[Pllpl (Poma) = 3 te(PL, 0}, p0%, PL,)

my

“ul 3 (0Lp0l) Bl

=t (P, Q).

The above examples make it possible to represent three of the four components
of the decomposition of superoperators: unitary transformations, projective measure-
ments, partial traces. Unfortunately, it is not possible to do the same for the missing
preparation: there is no such strategy to describe preparation of a new state. Suppose
we want to define such a strategy in the arena [H,] — [H4 ® Hg] which corresponds to
the operation that takes a state p to a state p ® |p){¢|. Using projective measurements,
we need to associate to a question P, in [H, ® Hp] a question P, in [H,] such that

tr (PZ,;‘B (p® |<,0)<90|)) =tr (P;;j p) .
Following a scheme similar to the case of unitary strategies, we would take
Pyt = (elPyi" ).

The problem is that (@IP%|) is not a projector in general. This is a difficulty that
makes it impossible to get a general correspondence between strategies in [Ha] — [Hp]
and superoperators from Hy to Hp following the scheme used in the examples above.
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As it is the case with general probabilistic strategies in [Hy], a general probabilistic
strategy in [Hs] — [Hp] needs not to respect the laws of quantum mechanics. One
such example would be a strategy o~ which makes Player ignore the [H4] component
and play in [Hp] using a probabilistic strategy which does not correspond to a quantum
state. When composed with a state strategy [p] in [H,], this gives a strategy in [Hp]
which is not a quantum state. Thus the strategy o does not correspond to a superoper-
ator.

It is possible to see both the unitary and partial traces constructions as special cases
of a construction involving trace-preserving superoperators. Suppose we have such
a superoperator &: SD(H) — SD(H), with dim(H,) > dim(Hp) such that & maps
projectors to projectors. We define a strategy as above using the adjoint & to &:

(€]

[H] [H]
P
& ()
m
m

Since & is trace-preserving, & is unital and

Y EPE)=EM=1.
This shows that &(#») is a complete projective measurement. As in the above examples,
a direct computation shows that [E][p] = [E(p)].

Product of strategies

Suppose we have two probabilistic strategies o: [H4] — [Hg] and 7: [H¢c] — [Hp].
Can we define a tensor product strategy o ® 7 in the arena [H4]® [Hc] — [Hp]® [Hp]?
It is impossible to do so in general, since this would require, in a typical case, that we
construct a projective measurement #, in Hy ® Hc from a projective measurement £
in Hg ® Hp:
[Ha] ® [Hc] ——=[Hp] ® [Hp]
P
P

The strategy o may provide a way to connect a projective measurement on Hg to a
projective measurement on H, and similarly 7 may connect a projective measurement
on Hp to a projective measurement on Hc, but there is no way to separate $» into
two projective measurements to use o~ and 7 to define 7. Yet, it is possible in many
important examples to define a strategy o ® 7 that acts as expected. Consider for
example the situation where o and 7 are two unitary transformation strategies, say
o = [Ui] and 7 = [Us]. In this case, we can define ¥, as (U; ® Uy)' P (U @ Uy).
This give that [U] ® [U;] = [U; ® U,]. We can define similarly a tensor strategy of
two partial traces strategy with the property [tr|] ® [trp] = [tr; @ tr,].
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3.5 The category of quantum arenas and quantum strate-
gies

In the previous sections we have introduced all the necessary concepts needed to define
a category QStrat of quantum arenas and strategies.

Given two probabilistic strategies 0: A —o B and 7: B — C, we define their com-
position in the same way as in section 2.3:

[ 71(s) = Z o (ulap) 7(upc).

uewit(s)
We take quantum arenas [H] as objects of QStrat. Since not all strategies
o [Ha] — [Hpl

preserve quantum states, we need to restrict the definition of morphisms [H4] — [Hp]
to the strategies o: [Ha] — [Hp] such that for every [p]: I — [H,], the composition
olp] is also a strategy of the form [p’] for some state p’ in Hg. The composition of
two such strategies clearly satisfies the same condition. The identity strategies trivially
have this property.

3.5.1 Quantum strategies as probabilistic strategies

In the application of quantum strategies as interpretation of terms of quantum lan-
guages, quantum arenas and strategies cohabit with classical arenas and strategies that
represent classical terms and data. We thus need to be able to mix classical and quan-
tum strategies.

Quantum strategies are defined as special kind of probabilistic strategies, and thus
the category QStrat can be embedded in the category PStrat. Given a quantum arena
A, we define the (probabilistic) arena A to be the arena obtained by replacing questions
with all possible (a,®) such that P is a projective measurement on H, and keeping
the same labelling and enabling structure, so that every play in A is a quantum play in
A. This extends trivially to strategies in A, which can be identified with probabilistic
strategies in A. An arena [H] is sent to a probabilistic arena [H] and a probabilistic
strategy o : [Ha] —o [Hp] in QStrat is sent to the strategy o.

In the subsequent chapters, we will work in the category Pstrat, identifying A and
A. Note that while the two arena operations — and © are preserved in this embedding,
the tensor operation between quantum arenas cannot be extended to all probabilistic
arenas. This is an important fact that guided the design of the type system of the two
quantum A-calculi presented in chapter 5 and 6.

3.5.2 Tensor product of strategies with classical interactions

In 3.4.3 we showed how to defined the tensor product of strategies representing various
important quantum operations. In general the application of a quantum operation is
conditional on some previous classical data, and embedding Qstrat in Pstrat allows
us to encode these dependencies using probabilistic strategies.
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There are two different cases to consider. In the first case, we have quantum states
in H that depend on some classical interaction in an arena U:

U —"—[H]
P
a
an
m

Since the answer m to  must describe a quantum state, we assume that there is a
density matrix ps, S = @y ... a,, such that

o(m|Prs) = tr(P,?nps).

A simple example of this situation is a conditional preparation strategy prep which
behaves like state |b){b| according to some boolean value b € {0, 1}. This strategy is
described by the following typical play:

bool ——[H]
P

?

b
m

where
prep (m | Py?b) = tr (P}, |b)b]).

We can define a tensor o ® 7 of two such strategies o and 7 as follows:

Ur o Up—""[H,]®[Hg]

P
ag

Qn

b

b,
mm8

where the probability that Player answers m” m? to P, after the interactions s = a; . .. a,
and t = by ...by, 18 tr (P,,4,,505 ® p;). Note that while we take the tensor product of the
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two output quantum arenas, we must take the classical game product of the classical
input arenas.

The second case to consider is when o~ and 7 are both strategies that correspond to
conditional quantum operations. The general pattern is similar to the purely quantum
case presented in 3.4.3, but we add to the input arena of o and 7 two classical arenas
U, and Up where the classical part of the interaction occurs:

0: UsO[Ha]l = [Hp]l, 7:Uc®[Hc] — [Hpl.
For example, consider a typical thread in the first case: the interaction looks as follows:
Us ©  [Hal —"—[Hz]

P

a

Aan

SNV

m

where s = a;...a, and & is a trace-preserving superoperator such that &; preserve
projectors. Note this is a deterministic strategy.

Assuming that o and 7 are two strategies as above, we can define o ® T by the
following typical play:

oRT

Uy o Up o [Hyl®[Hc] [Hp] ® [Hp]
P
a
an,
by
by,
(& 0 EF) )
mm’
mm’

where the probability that Player answers mm’ to P after the interactions s = a; ... a,,
and f = by ... by, 1S tr (P ps ® pr).
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Diagonal strategies and quantum strategies

We mentioned in section 2.3 the important role played by the diagonal strategy
A:A—>AGA

in game semantics: thread independent strategies o: A — B are duplicable:

A—2>A0A

o i l [0l

BT>B®B

It is well-know in game semantics that thread dependent strategies describe processes
with side-effects. These are usually associated with stores where content is affected by
various operations like incrementation or assignment. In a classical language, the effect
of these operations is not immediately visible: it is only through access to the store
content that the previously made operations can affect the future of the computation.

Quantum strategies of the form [p]: I — [H] are thread dependant because they
encode the dynamics of the evolution of a quantum state: measurements are opera-
tions performed on the state and their effect is not visible to the environment until the
next measurement is performed. Since in a quantum play each measurement operation
correspond to a different thread, quantum strategies must be thread dependent.

The strategy [p] is defined assuming that Player provides the measurement result
answers to an Opponent question by observing the state resulting from the last per-
formed measurement (or p in the case of the initial question). The following diagram
is not commutative:

I—>2 101

[ﬂ]i i[p]@[p]

[H] ——[H] o [H]

This means that a quantum strategy cannot be cloned using the A strategy. On the
one hand, the role of A in [p]; A is to allow Opponent to have access to [p] from two
different instances of the arena [H]. A question P, in either the left or the right [H]
is answered using [p], and the future answers are affected in the same way in both
cases. On the other hand, A o [p] © [p] behaves like two independent instances of [p]:
a question P» in the final left [H] arena is answered using the left [p] strategy and does
not affect the right [p] strategy.

We can define another strategy {p} which is not dynamical and is thus duplicable.
This is done by assuming that Player has an infinite supply of quantum states p, and that
each measurement asked is performed on a fresh state. The strategy {p} corresponding
to this scenario is defined by

{phm | sP2) =t (Pl p)
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This new strategy is thread independent since

{p} (sPom) ’ {p} (tP>m)
L T —w(Plp) =
e = rPne) = =

and thus this time {p} is duplicable, i.e. the following commutes:

I —2 >0l

{p} l i {plofp}

[H] —— [H] O [H]

This relation between {p} and A is saying that if we have an infinite supply of copies
of a quantum system all in a certain quantum state, we can use them as two infinite
supplies of quantum systems in that state.

Note that there is no equivalent to the diagonal strategy for the tensor operation ®.
This is because such a strategy D: [H] — [H] ® [H] would be cloning unknown quan-
tum states, which is impossible. We can look at this from a new angle with the concept
of quantum strategy. To define D, one would need to take a projective measurement $»
in H ® H and transform it into a projective measurement on H, but there is no natural
way to do so.

3.6 Quantum strategies using other quantum measure-
ments

In the previous section, quantum plays are defined using projective quantum measure-
ments. It is possible to work with the other types of quantum measurement described
in section 2.1.2. An important motivation in doing so is the problem exposed in 3.4.3
of defining a preparation strategy using projective measurements, which is due to the
fact that the family of projectors is not closed under certain operations.

In a quantum arena A, the number of possible answers to a question £, must be the
dimension of the associated Hilbert space H,. This assumption was made so that it is
never the case that there are more possible measurement results to a question $, than
the dimension of H,. Since we work below with other types of quantum measurements,
and since these measurements can handle more measurement results than dim(H,,), we
drop this limitation when working with other types of measurements than projective
measurements.

3.6.1 Generalised measurement based quantum strategies

Suppose that in a quantum play we allow using generalised measurements of the form
M, = {M, | at+ b} instead of projective measurements. It is still possible to define
strategies for quantum states, unitary transformations and partial traces in a similar
way as when working with projective measurements.
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Given any state p in H we define a strategy [p] in [H] in a similar manner as with
projective measurements. The strategy [p] makes Player answer an initial question M,

with the measurement result m with probability tr (M;, P (M;;)T)

In the case of a unitary transformation U, we can define a strategy [U] where Player
plays as follows:

[H] —[H]
M7B
MvA
m
m

9 . . .
where Mo, = {M,‘,f U } This defines a new generalized measurement since:

> (M, 0) (M, U) = U [Z M;Mm] U=UIU=1

m

As with projective measurements, when we compose this with a strategy [p]: I — [H],
we get

[UpI (Mo, Mo,y = tr (M U)p(MyU)') Sy

= tr(M,, (UpU") M})
= [UpU"] (Mo, Mo, mn).

Strategies for partial traces using generalised measurements are defined similarly.
It is also possible to define a strategy representing the effect of performing a generalised
measurement, as in example 3.20.

The problem of the preparation strategy is still present. The usual scheme fails for
a similar reason as in the case of projective measurements. Since we want a strategy in
[Ha] — [Ha ® Hg], we need to associate to a question Mo,, in [H4 ® Hp] a question
M, in [H4] such that

(Moo @ Il () ) = (M3 (013)').

The natural candidate is M* = M,?,;‘Bl(p). It is easy to check that }’,, (M,Z;*B)T MM =1,

but Mo, is not a generalised measurement because M,Z{‘ is a map from Hy to Hy ® Hp,
and is thus not a map in M(Hy).

3.6.2 POVM based quantum strategies

Suppose that we use POVM measurements A, = {A,, | a + M} over H, in quantum
plays instead of projective measurements. It is again possible to define strategies for
quantum states, unitary transformation and partial traces with a similar construction
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as in the case of projective measurements and generalised measurements. It is even
possible to define a strategy [E] in [H4] — [Hj] for any trace-preserving superoperator
&. The strategy [E] is defined as follows:

[Hy] —[H3p]
As,
Ao,
m
m

where A4 = & (A,r;‘f) This is always a positive operator. The adjoint & being unital,

we have that
ZA,?,;* = Za* (ar)=¢& [Z Aj,f] =&W) =1,

And thus & (A,,) is a POVM. If we compose [E] with [p], we get

J

=1tr (A, Z EkaZ]
k

= tr (A;E(p))
= [E(P)] (A9, Ay, nim)

[E1p) (Ao, Ao nm) = ) tr (Z EjA ,Ekp] ij
k

so [€] acts on quantum state strategies as & acts on quantum states.

There is a important limitation when using POVM based quantum strategies. The
quantum state left after a POVM is not specified, so it is not possible to have quantum
strategies with multiple threads as with projective measurements. In particular, there is
no natural way to use the scheme of example 3.20 with POVM based quantum strate-
gies since it involves two successive measurements of the input state. It is possible
to work with the convention that a POVM {4,,} updates a state p to vA,,p VA,, when
the measurement result is m. We use this idea in the construction of a denotational
semantics in the next chapter.

3.6.3 Intervention operators

The last generalisation of the definition of quantum play we consider is the case of
intervention operators. This is the most important example; we use this generalisation
in chapter 5 and 6.

In this case, the projective measurements associated to question moves are replaced
with quantum interventions. We associate to a question g a family of superoperators

&, = &)+ SD(H,) — SD(H,))
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indexed by the possible measurement results m. When working with quantum inter-
ventions, we need to drop the limitation imposed in definition 3.1 on the number of
answers to a given question. This is because quantum interventions can take a state p
in a certain space and map it to a state in a different space. Note that in a general play,
the different occurrences of a question g will not all have the same associated Hilbert
space H,.

The strategy describing a state [p] is defined similarly as in the other cases: Player
answers m to &; with probability tr (8,21(,0)). Note that the state after the intervention
is &) (p), which is in SD(H,,). In general, this will be a different space than the space
before the answer is given, namely SD(H,). If Opponent asks another question &2
after receiving her answer to &, all possible Player answers will have probability zero
when the domain of &y is different than SD(H,,). When the domain and SD(H,,)
match, the question &) is answered using the normalised state &l (p)/ tr (8;(;;)). In
general, a typical play in gstore is a sequence of the form

Sorymy . .. gy

consisting of alternating quantum interventions and measurement results. The strategy
[o] in gstore is defined by

[p] (mn | 87[1]"’!1 .. .87[,,]) =1tr (8:,[:’] .. 8;1[11]([))) .

Note that we consider [p] to be a partial strategy: it is possible that Opponent asks &,
using an intervention operator with an input space which is not the same as the last
output space or with the space from which the starting state is taken. We define [p] as
assigning probability zero to all plays where this is the case.

The scheme used to represent quantum operations with the other quantum mea-
surements formalisms can also be used with intervention operators. Suppose that ¥ is
a trace-preserving superoperator. We have that

[Hal — 2 [Hp]
873
&,
m
m

where &, is taken to be &, F = {8:,5 o 7’}. Since F preserves traces, E,,F is again a
quantum intervention:

DL ENTF(E) = Y Ep = 1,

m

where p” = ¥ (p). When we compose the strategy [ ] with a state strategy [p], we get
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that
[Fllp) (1| Er,Er,m) = " tr(ELF (0)) Sy

=t (&7 (F(p))
=[F ()]
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Chapter 4

Game semantics for the measure-
ment calculus

As a first application of the quantum strategy concept developed in the last chapter, we
study in this chapter the low-level measurement calculus, presented in section 2.2.1.
The measurement calculus lacks an explicit type system: this was not required when the
measurement calculus language was first introduced, since the main purpose then was
to simplify the presentation of the one-way model [RBO1]. Because the construction
of a game semantics is based upon games corresponding to types, we must begin by
the introduction of a typed variant of the measurement calculus.

4.1 MCdata

The formalization of the measurement calculus that follow aims to construct a type
system where commands are typed in a way that automatically enforces the three con-
ditions defining patterns in section 2.2.1.

The approach chosen here to add types to the measurement calculus is not the
unique possibility. We choose to consider quantum states as constants, as we do for
Boolean and angle values. This forces commands to be operations taking quantum
data to quantum data. Signals are considered as (classical) sfores where measurements
results are written when a quantum measurement is performed and read by derefer-
encing. Another possible approach would be to represent quantum data as the state
of a quantum store. In that case, commands are considered as operations modifying
the internal state of the store. While we do not develop this idea in the case of the
measurement calculus, it is developed in chapter 5 in the case of a quantum A-calculus.

4.1.1 Syntax

The language MCdata we define below uses labelled types and labelled terms. The
labels identify gbits, and allow signals to be tied to specific measured gbits.
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The terms of the language MCdata are constructed as follows:

Booleans B, By, B> O|1|!s|By® B,
Angles W, Wy, W, a|W,+W,|rotWB B,
gbits Q = x||¢>1|meas§sWQ|EijQIX[BQIZ,-BQ

where s, x are variable picked from an infinite set of variables Var, « € [0, 2n), i, j are
gbit labels, I is a finite set of labels and |¢)’ is a state in the complex Hilbert space
H; = ®i€[ C? — since we use integers as labels, these products are always taken in
some specific order. If I = (), we set H; = C. We assume there is an infinite number
of different labels, i.e. that the number of gbits involved, while always finite, can be
as large as desired. Most of the operations are explicit analogues of their counterparts
in the measurement calculus. The only Boolean operation needed in the measurement
calculus is the exclusive-or @ operation. Boolean values are introduced as terms, either
directly as the constants 0, 1, or indirectly as measurement results stored in signal
variables which are accessed by the dereferenciation operation !. The angle operation
+ is the addition (modulo 27) of two angles. The operation rota b, b, takes the angle
a to (-1)?" @ + bymr, where b; and b, are two Boolean values. This operation is used in
the measurement calculus when signals are used to modify a measurement angle, using
the notation [M 1%, Since we use conditional rotation operation, the gbit measurement
operation does not need the signal input present in the measurement calculus. Finally,
the above syntax introduces analogues of the conditional correction commands X and Z
and of the entanglement command E, together with gbit constant terms and variables.
Qbit variables are necessary to be able to represent terms with unspecified input.
The type system uses four base types:

T == angle | bool | gbit’ | signal’

The types angle and bool are the classical types of angles and Boolean values,
and the gbit’ type is the type of gbit states over H;. Signals are stores for Boolean
values. The labels associated to the type signalf, specify to which gbit i in / the signal
is associated to, i.e. the gbit that can be measured to change the value of the signal.

A context T is a partial function assigning types to variables: it is written as a list
of type assignments x;: T7,...,x,: T,. Note that such a list cannot refer more that
once to a given variable. A typing judgement is a triple I' + M: T consisting of a
context I', a term M and a type 7. We must give rules so that one can infer the type
of a term M in a context I' from basic type assumptions. Before doing this, note that
measurements are destructive in the measurement calculus and thus that it should not
be possible to reuse the label of a previously destroyed gbit. We enforce this formally
by keeping track of the unused labels of a term M the set unused labels in M is denoted
UL(M). We consider the measurement and dereferencing operations binding on signal
variables: a variable s is free in M if it does not occur in M as an argument to a meas
or a ! operation. The set of free variables of M is denoted FV(M).

The typing rules of MCdata are described in table 4.1. Note that we only allow
variables of type signalﬂ and gbit’, since it is not possible in the measurement calculus
to have an unspecified Boolean or angle.
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Table 4.1 MCdata typing rules

Constants
x € Var

Lx:Trx:T  p_ signal’ or gbit! ['+a:angle @¢€[0,27)

TFb:bool bEL01} gy guid 190 € Hi

Classical operations
T+ s: signal} I' - W: angle I' + By : bool I'+ B,: bool

" T rls: bool I'+rotW B; B;: angle
I' + By : bool T'+ By: bool '+ W;: angle '+ W,: angle
I'+ By ® B>: bool I'F Wi + W,: angle
Quantum operations
I' + B: bool [+ Q: gbit!“t I' + B: bool I'+Q: gbit""
I+ X;BQ: gbit!“!? I'+ZBQ: qbit

T+ s: signal} I'+ W: angle T+ Q: gbit™
I+ meas) s W Q: gbit’

s € FV(W) N FV(Q)

I+ Q: gbit!V) T+ Q: gbit
I'rEyQ:gbit"™! T+ prep; 0: gbit""!

i € UL(Q)

An MCdata pattern is an MCdata term M for which we can derive a typing judge-
ment of the form

S1: signal?}, e Syt signali",x: qbit™ F M qbit™,

where In, Out, J; C 1. To clarify the notation, we label signal variables with the label i
of the associated measured gbit: s; is the signal where is stored the measurement result
of a gbit of type gbit’. Note also that we need to use gbit variables in order to describe
the unspecified input to a pattern. This is because we do not have access to higher-order
types such as “gbit™ — gbit®"”

As the following examples show, it is easy to write a measurement calculus pattern
as a MCdata term.

Example 4.1. The MCdata form of the measurement calculus pattern for the Hadamard
operation is
Hadamard;, = X, !s meas{z sO0Ej, prep, x.

Note that we have left all parentheses implicit: the Hadamard term is

Xa (15) (meas}2 50 (E12 (prep, x))).
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The type of this term is
s: signal}z,x: gbit' r Hadamard, : gbit?
Example 4.2. The controlled-not operation AX is represented in MCdata as the pattern
CNotipg = Xg 15324 152 Z; Isp meass; s3 0 meas, s, 0 Esq Exs Ej3 prepsprep, x
The type of this pattern is
Xx: qbitslz, §7: signal%234, §3° signalf34 + CNotjos: qbit14

Example 4.3. The teleportation pattern, which takes some state in H; and transfers it
to Hj:

Teleport,; = X3 152 Z3 |s; meas3; s> 0meas,; s1 0 Ex; Ej prep; prep, x
We can derive the following typing judgement using the above rules:
x @ gbit!, sy : signall,,, s, signal3, + Teleport,;: gbit®
The type system restricts MCdata terms to those corresponding to patterns.

Lemma 4.4. IfT"' + M: T is an MCdata valid typing judgement, then I contains at
most one variable of type qbit’ which is used in M

Proof. By induction on the derivationof I' - M: T.

If M is a constant or a variable term, the result is trivial.

By inspection of the other derivation rules, we can see that in all cases the hypoth-
esis contains at most one term of type gbit’, which, by induction hypothesis, contains
at most one variable of type gbit!. The term in the conclusion thus also has this prop-
erty. O

We henceforth assume without loss of generality that there is at most one gbit
variable in a context, i.e. that all contexts I" are of the form

S1e signalj‘l, ey Syt signalj",x: qbit™™.
Consider a gbit MCdata term M:

s1: signal?l, ..., 8y signal”, x: qbit™ + M: qbit®u.

Does the MCdata type system force M to correspond to a measurement calculus pat-
tern? While we can construct from M a sequence of measurement calculus commands,
we need to check that it will always satisfy the three defining conditions of patterns.

1. Assume a signal s: signali is used in M. According to the typing rules, the only
place where s can be used in either in a dereferencing operation or in a measure-
ment operation. To satisfy the first defining condition of measurement calculus
patterns, s must not be used in the arguments of a measurement operation that
assigns a value to s. The measurement operation typing rule explicitly forbids
this.
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2. Since the type system does not allow to the introduction of a new gbit label i to
a term N with prep;, when i has been used previously in the construction of N,
no command can be applied to i, if i is measured in the measurement calculus
pattern associated to M.

3. For similar reasons, if i € Out, then i cannot be measured in M. If a gbit i ¢ Out
is used in M, then i must be measured at some point since the measurement
typing rule is the only one where labels are removed from gbits.

4.1.2 Operational semantics

The operational semantics we give in this section is a direct adaptation to MCdata of
the semantics given in [DKPO7]. A store is a partial function X : Vars — {0, 1} taking
variables to Boolean values. Stores are modified as follows:

bift=s
(1) otherwise.

X[s — b](t) = {

A MCdata state is a pair X, M where X is a store and M is a MCdata term. A canonical
form X, V is a pair with a store X and a constant term V.

The operational semantics is given by a probabilistic reduction relation X, M |}?
>’,V, where V is a canonical form and p € [0, 1] is the probability of the reduction
occurrence. The parameter p is omitted when it is 1. The reduction rules are described
in table 4.2.

Note that the only place where the reduction rules allow probabilistic branching is
in the two rules for measurements.

4.2 Denotational semantics

We now turn to the problem of applying the ideas exposed in the last chapter to con-
struct a game-based interpretation of MCdata terms. We want to define a map [[-]] on
types and on typing judgements such that [I" + M: T] is a strategy in [[']] — [[T']]. Be-
cause of the presence of the preparation command, we need to allows POVM quantum
strategies as introduced in section 3.6.2. Note that the fact that there can be only one
POVM measurement per play is not problematic since in the measurement calculus
each gbit is measured at most once.
Each type of MCdata is interpreted as a quantum arena:

[bool]l =bool  [angle] = angle  [[gbit'| = qbit' = [H)]
[[signal}]] = signal’ = (angle o qbit — gbit’ ) © bool

The bool arena is the classical flat arena defined in section 2.3.4. The angle arena is the
flat arena over [0, 27), defined in a similar way as the bool arena. The interpretation of
the qbit’ uses the quantum arena [H;] which is the tensor product of arenas [C?], one
for each index in /.

The interpretation the signal type is more complex. Since we consider signals as
stores, we use an interpretation similar to what is used in the case of classical stores. A
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Table 4.2 MCdata reduction rules

Constants
TalZae €020 Toyxzo =z 101
EalTa FEVA s e 3 |g)
Classical operations

215 X, 2(s)

2, w UP 2’,0’ Z’,Bl Uf]l ZII’bl ZN,BZ qu zlll’bz
2, q, rot WB] BZ UP‘]](]Q E’",,B
a €[0,2n), by, by € {0, 1} and B = @' + bor

2, B 7 ¥, by ¥, B, J1Y, b,
>,Bi®B, JP1¥,b
WP Y, o YW 1Y an
S W+ Wy P18
Quantum operations
LBUE,h X,QUE )Y LBUPE,b X005, |p)0
X, BQ P Y, ([Xi1°16))! 2.Z;BQ P12, ([Z] gy
LWEPPYe X093,
T, meas) s W Q 77 Z[s > 1], 1(+,¢)’

b],b2 € {0, 1}, b= b] XOI'bz

a,ay €[0,2n), 8= a1 +

r=+ald)P

LWUIPY,a Y, 0 93, gy

T, meas) s W Q |77 Z[s - 0], (=, |¢)’
3,007 %, ) 2,007 Y, 1)

2,Ei; Q UP X, (AZ;jlg))! 1) ,prep; O U7 X/, (|+) ® [¢y)

r=K=al$)P

classical store s comes equipped with two methods: one to write a value to the store,
one to read a value from the store. The type of a classical store for Boolean values is
taken to be

(bool —o com) ® bool,

where com is the arena for command types, where the only possible interaction is of the
form “run done”. Opponent asks that the command be run, and Player confirms that this
has been done. With this definition, the write and read operations can be respectively
interpreted as the projections on the bool — com and bool arenas. Intuitively, the write
operation is a command that takes a value as input and is executed returning no value,
and the read operation simply returns a Boolean value. The definition of the signal
arena given below differs from this because we consider the measurement operation as
a variant of the classical write command. Since the measurement operation takes an
angle and a qbit™" value and returns a gbit’ value, the write part must be replaced by
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the arena .
angle © gbit/""! — gbit’.

We want the two projection strategies to correspond to measurement
meas : signal; — ((angle o qbit/t ) —o gbit )

and to dereferencing _
deref : signal; — bool.

We thus use the arena
signal’ = ((angle O qbit” U[i}) —o gbit’ ) © bool

as the interpretation of the type signalﬂ.

A term M is said to be semi-closed if we can derived a typing judgement of the
form I' + M: T with I containing only signal variables. The interpretation of a semi-
closed term I' - M: T is a strategy [[M] : [I'l — [71 which is defined by induction
on the derivation of typing judgements.

All constants are interpreted as their corresponding strategies as described in the
previous chapters: the Boolean values 0 and 1 are interpreted as the strategies 0, 1: bool
and similarly an angle @ € [0, 2x) is interpreted as the strategy «: angle with typical
play

angle

?
a

A quantum state term I F [): gbit’ is interpreted as the strategy [l(p)’ ] in [T] — gbit’
which ignore the [I']] component.
The dereferencing operation !s is interpreted as the projection strategy deref de-
scribed above:
[T r!s: bool] = [[s] ; deref.

The classical operations are interpreted using deterministic strategies rot, xor and
addAngle with the obvious definition:

[T F rot WBB,: angle]] = (IW1, [B:1, [B1); rot
[T+ By & B,: bool]] =[B:], [B:1); xor
[T+ Wy + W,: angle]] = ([W.1, [W-1); addAngle

In each case, Player queries Opponent about each required input datum and produces a
final answer in the output component.
Conditional corrections are interpreted as follows:

[[r + X,BO: qbitlu“}]] = ([B], [Q1); condX;
[[r v Z,BO: qbit’U“}]] = ([B], [Ql); condZ;
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Table 4.3 MCdata denotational semantics

”signal;

[[F, x:TFx: signalﬁ]] : [T © signal, —— signal;
[[F,x: T+ x: qbit’]] . [T © gbit! ol 71

[T+ a: angle] : [I] —— angle

[T+ 0: bool]l : [[T] ——> bool

[Tr1:bool]: [T ——> bool

[ 16} qit’]| = T L gbit’

[T 1s: bool] : [T] —~> signal, —=> signal’

AW B B2 1)
I'rot W B B,: angle]| : [[T]] Lo =1 angle © bool © bool LI angle
g

({81 X
[T+ By&B,: bool] : [ e, bool © bool ——= bool

AW LW D ddAngl
[T+ W, +W,: angle] : [T % angle © angle e angle

. X . e .
[T+ X BO: qbit™]| - Ir] — 222~ bool o gt " it/

_ ) . dz; .
[r+zBo: goit™] : ] —" bool © gbit"? "% gbit™ ¥

; 1 @IwLIeD oy A (meas)) iy
IIF + meas; s W Q: gbit ]] : [T ————— signal; © angle © gbit"™~""" ——— qbit

. N U o
[[F F Eij QZ qbitlu(l"”]] : IIF]] & qbitluh"” g qbitlu(t,_/)

LoV, gbit’ s gt

[[F F prep; Q: qbit’u‘”]] |
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Both strategies _ '
condX;, condZ; : bool ® gbit’V!! — qbit!"

are defined as follows: if Opponent begins with A, in the output component, Player
asks Opponent for a Boolean in the bool component, and then asks either (X,;?(XIT)?
or A, when he is answered 1 or 0 respectively. He finally copies the final Opponent’s
answer to the output component.

bool o  gbit'! ———— gbit'“!?
Ay
?
b
(xParxr),
m
m

Note that if we had the resources of higher order language, the conditional corrections
could be interpreted using an “if then else” construct. In the case of a X correction,
this would give:

if Bthen X else id.

In in classical higher-order game semantics, conditionals are interpreted using a strat-
egy cond and pairing:
[if Bthen M else N = {[[B], M1, [N1); cond

where Player, when using the cond strategy, probes Opponent about the input bit, and
then probes again in either the second or third component to copy Opponent’s answers
in the output component.

The measurement commands are interpreted using the adjunction bijection A be-
tween strategies in A © B — C and those in A — B — C. The projection meas), has
the adjoint

A~'(meas)): signal; © angle © gbit’"!"" — gbit’.

The denotation of the measurements commands is defined by
[T + meas) s wo: qbit']| = ([s1. (W1 [Q1): A" (meas],;, ).

Entanglement operations are interpreted using the unitary operation strategies de-
fined in section 3.18:

[[F FE;Q: qbitlu“’j}]] = [Q1: [AZ;]

The interpretation of typing judgements ending with the preparation of a new gbit
is defined using the preparation strategy

prep;: qbit’ — gbit/""
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as described in section 3.6.2. Suppose we are given an interpretation [[F F Q: gbit! ]]
with _
I+ Q: gbit!t

The strategy
[[F +prep; Q: qbit’U{”]] . [T —o gbit™!!

is defined as the composition [Q] ; prep;.
This completes the definition of the denotational semantics.

Example 4.5. Consider the interpretation of the Hadamard given in example 4.1, but
for a fixed input gbit |p)!:

[s: signal}, - X, tsmeast, s 0 E1z prep, lp)' : gbit’

is equal to the following composition:
signal%2

A
signal, © signal,,
idoA
signal}, O signal}, O signal;,
idoidoA
signal |, O signal}, O signal;, O signal;,
idoidoido[[lp)']]
signal;, © signal}, © signal}, © gbit'
idoid o[0]leprep,
signal}, O signal}, © angle © gbit'*
derefoA~! (meas?)
bool © qbit?

condX;

gbit?

4.3 Soundness

Since our goal is to show that the denotational semantics matches the operational se-
mantics of MCdata, we need to take stores into account in the denotational semantics.
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To this end, we need to define a strategy sig: [ — signalﬂ that behaves in a way that
encodes the behaviour of a signal interacting with its environment.

Assume that a signal is initially set to b; € {0, 1}. A typical play in the signal arena
where Player is using the deterministic strategy sig,, is

(angle o  gbit"’"! —— gbit’) © bool

?
by
A
?
a
A @ {[+al, [=ali},
m, bz
m
?
by

In the typical play, Player answers question in the Bool component using the initial
value b; and answers any question A, about the output gbits using the measurements
results he gets from Opponent when she is asked to measure the input gbit at the re-
quired angle. New Opponent questions in the bool component are answered using the
measurement result b, in for gbit i.
Let I' be the context
S1: signal}], ey Syt signal',l”.

A T'-store is a store X defined exactly for the variables s, ..., s,. If X is a I'-store, we
define [Z]] to be the product strategy

(sigz(sl), .. .,sigmn)): I-I7.
A pair 2, M, with T + M: T semi-closed and X a I'-store, is interpreted as
[, M] =[] [M].

The next proposition says that if some term M reduces to some value V with prob-
ability p when starting with a store X, then, if Player is using the strategies associated
to M and V in their respective contexts, he behaves in the same way in both cases with
probability p:

Proposition 4.6. If X, M ||? X', V, then for all well-opened sab € T ([X', V]|) we have
that
[Z, M| sa)=p[Z, V]| sa)

Let us consider a simple example of such an equality between probabilistic strate-
gies in the arena bool. Consider the strategy true and the strategy coin which makes
Player answer the initial question with 0 or 1 randomly with uniform probability. The
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fact that Player behaves the same way in both cases with probability 1/2 can be written
as in the statement of the last proposition:

. 1
coin(b | s?7) = 5 true(b | s7).

We prove proposition 4.6 using a stronger proposition which is proven by induction

on the derivation of £, M |}’ ¥, V, using
[Z, M = [Z1; A; (IM1 © idyry)
instead of [Z, M]. This stronger proposition is that given X, M ||’ X', V, we have
[=, M1 (| sa) = p[Z, V] (| sa)

for any well-opened play in 7 ([X’, V1) starting in [T]]. Since these plays are the same
as those of [[Z, M]], the proposition follows directly.

Proof. We prove the result by induction on the derivation of X, M [}’ X', V, but we
need to prove it using a stronger hypothesis. We define [, M]’ to be the morphism

—2 i —2 e M e

and we show by induction that given X, M |7 X', V, we have
[Z, MY (s) = p[Z, V] (s)

for any well-opened play in 7 ([Z’, V]') starting in [T]. Using the variant [, M]’
allows one to access the [X]] strategy from the output arena, which is not possible if we
use [Z, M].

For constants, the result is immediate.

We show how a typical induction case is handled. Suppose the proposition holds
when X, B; |” ¥/, by and ¥/, B, J? X", by, and that we want to prove it when

X,BioB |’1Y,b,

with b = by ® b,. Let sab € T ([Z”, b]") with a being a move in bool. The fact that the
diagram

idoA

[Tloelrl [TTedIrToelrn
AOidl /
([TMelrmHelr

commutes and the functoriality of the ® arena operation imply that [X, B; ® B>]’ is
equal to
[=1

1 —[T7] bool & [I']]
A\L Txor@id

[(poelrn bool © bool © [[T7]]

1] ]]oidl Tid ollB.lleid
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Consider a witness u of sa in the above composition. The first move of u must be a
question in the final bool arena. The xor strategy copies this question to its left bool
input arena, and the identity strategies copies it to a question in the output bool com-
ponent of [X, B]". By hypothesis, this strategy behave like [¥’, b, ] with probability p
and leave the I'-store in the state X’. At this point, the Xor strategy begins an interaction
in its second bool input arena, and the play proceeds using [X’, B,]’. The induction
hypothesis implies that [X’, B,]’ behaves like [X”, b,] with probability g. Finally,
Player following the xor strategy will answer b = b xor b, in the final bool compo-
nent with probability pg, leaving the I'-store in state £”. This shows that plays starting
in the last bool component [X, B; ® B, ]| behave as [X", b]] with probability p.

Consider the case of the measurement rule. Suppose that the proposition holds for
WP Z,aand X7, Q U9 27, )V We want to show that when

¥, meas,sWQ P 3", o)
for all well-opened plays sab € T~ ([[Z”, ) ]]’) with a in gbit, we have that
[ meas; sw 0] b1 sa) = pgr [£.10)']| & | sa).
where r = [(a. o). Similarly to the previous case, we have that
HZ, meas) s W Q]]’

is equal to the following composition:

=1 . .  JUL A~'(meas))oid /
| ——[I] signal; © angle © gbit’"! © [[] ————— qbit’ © [I']
Al i Tid ol Qlleid
[rre[r signal, © angle © [T'] © [T]

noeid l T idoA

signalj oI —aer signal§ © angle © [T

Consider a witness u of sa in the above composition. The first move of u is a question
A, in the final gbit’ arena. This is copied to a question in the gbit’ component of
the signalﬁ arena. This is copied by the identity, projection and diagonal strategies to
the signalﬁ part of the initial I'. Following [X], Player asks back a question in the
angle component, which is copied back to the input signal arena of A~! (meas;). The
question is then copied to the angle input arena and copied to the output arena of [W].
By hypothesis, this question is answered with o with probability p after an interaction
which changes the [X]] strategy to a state where it behaves as the strategy [X']]. Note
that the s: signal, part of T is not affected by this change, since s cannot be used
before the measurement command meas} is introduced. The answer is copied back to
the signal; part of the initial store strategy, now [X]’, where Player uses it to ask for
result of the measurement

Ao @ {[+al. [=al} ]
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This question is copied to the input gbit/} of A~! (meas;), and answered using [QO].

By induction hypothesis, this happens in the same way as using the strategy |I|<,0)IU[”]]
with probability gr, where r is the probability that the measurement on gbit i gives the
result m. Note this is the point in the interaction where the quantum measurement is
actually performed. By hypothesis, after this interaction, Player will use the strategy
[X] in the first part of the composition, and as in the previous angle step, the s part of
X" is unaffected.

The answer is copied back to the initial signal?, where afterwards any query using
deref will be answered with the i part of the measurement result. This will leave the
store strategy behaving as [X[s — m]]], and the I part of the answer is copied to the
final qbit’ arena.

The other cases are treated similarly. O

The next important result about the relation between the operational and denota-
tional semantics of MCdata is adequacy, the converse of proposition 4.6.

Proposition 4.7. (Adequacy for MCdata) Let M be a semi-closed term. If for all well-
opened sab € T ([¥', V1) we have that

[Z, M1 (b | sa) = p[E, V] (® | sa),

then X, M ||” X',V holds.

Proof. By induction on the construction of terms. Assume I' + M: qbit®"!, where I

contains only signal variables. We show how typical cases are dealt with, the other
cases being similar.

For the base case, M is either a constant term or a signal variable. In both cases,
the result is immediate since M is a value.

Suppose that the proposition holds for B; and B,, two boolean semi-closed terms,
i.e. that the strategy [, B;]] makes Player play the same moves as [I”, 5] and that
the strategy [¥’, B»]] makes Player play the same moves as [, b,]]. We want to show
that the proposition also holds for I' v B; @ B;: bool. Assume that when player uses
the strategy [X, B; @ B,] he makes the same choices as if playing using the strategy
[, b] for some Boolean b. By the definition of [B; @ B,]|, Player answer the ini-
tial question by starting interactions using successively the strategies [B;]] and [B.].
Suppose that in these interactions the initial questions are answered by b, and b,
with probability p and g respectively and thus that the final answer Player gives us-
ing [B; @ B;]| is b = b; & b,. By induction hypothesis, this implies that X, By |7 ¥, b,
and X', B, |7 X", b,. If thus follows from the definition of the operational semantics
that

,Bi® B, JP1X by @ bs.

Most other cases follow using a similar argument.

The case for the two typing rules involving signals are a little different.

For a term of the form I' +!s: bool, assume that [Z, !s]] makes Player behave in
the same way as [X’,b]] for a Boolean value b. By definition of the dereferencing
strategy, the initial question in [[Z, !s]] is answered with the boolean Z(s). This entails
that b = X(s) and thus that X, !s || X, b.
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Suppose that the proposition holds for
[ s:signal), T+ W: angle and "  Q: gbit/',
We need to show that the proposition also holds for measi s W Q: gbit’. Suppose that
HZ, meas) sa Q: gbit ]]

makes Player play the same way as [, |¢)]] with probability p. By definition of the
strategy meas’, an initial question A, about the output gbits is answered using first an
interaction played using [X’, W] to determine the angle W and second an interaction
using [X”, O] to determine the quantum state being measured. The first interaction
will end with an answer which provides the measurement angle o with probability p;
there may be some part of the interaction which uses [X]] and leaves the game in a
state where the next moves in the signal arenas are chosen by Player according to the
strategy [[Z']. Since this means that [X, W] makes Player behave as if he is using the
strategy [Z’, @]l. By induction hypothesis, this implies that X, W |}’ X', @. The initial
question A, is transformed by the sigﬁ strategy into the question

Ao @ {[+alhs [~}

in the arena gbit’“'"). This question begins the second interaction and is answered using
the strategy [Q]l. The answer to the initial question of this second interaction is a pair
of measurement results m, b with probability g, where b = X”(s) is the measurement
results. The answer m is given by the state |p) since meas§ makes Player answer the
initial question A, with this m and that by hypothesis the strategy

[[Z, meas; sa Q: qbit’]]

makes Player play the same way as [£”,]¢)]. It is not possible to infer from the
measurement result the state being measured, but we can assume that this state is of
the form |p)|+,) if b is 1 or |¢)|—,) if b = O since all future interactions involving the
measured gbit use this updated state. The measurement result » must be X" (s). This
implies that with probability g the strategy [X’, O] makes Player behave as if he is
using the strategy [Z”, |¢)|+q)]]- This implies by induction hypothesis that

X0 V1Y lo)£q)-
Using the reduction rule for measurement terms, we conclude that
¥, meas) s W Q: gbit’ ¥ grX”,|®)
as required. O

A MCdata context C[—] of type A with hole of type T is a constructed like a term
with a free variable — of type 7.

Definition 4.8. LetT'+ M, M’ : T be two semi-closed terms. M and M’ are contextu-
ally equivalent M ~ M’ if for all context C[—] and T-store %,

5CIM]IPY,V < ECIMLIPY,V.
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We can extend this definition to general open terms M, M’ with a free gbit variable
x: qbit™ by asking that M[Q/x] ~ M’[Q/x] for any gbit term Q: gbit™.

We want to show that the denotational semantics defined in the last section captures
contextual equivalence.

Proposition 4.9. (Soundness for MCdata) If [M]] = [M']], then M ~ M’.
To prove this, we need the following lemma:

Lemma 4.10. (Substitution for MCdata) Let T, x: T + M: U and T + N: T be two
MCdata terms. Then

'+ M[N/x): T and [M[N/x]] = (idyry, [N1); [M])

Proof. By induction on the derivation of I', x: T+ M: U.
For the base cases where M is a constant term, So in

(M]: ITTolT] — (U]

all plays contain only moves from [[U]. The composition of [M] with {(idyry, [N1)) is
thus [M]). If M is a variable y # x, then [[y] is the copy strategy between [U] and the
[U1 component of [I']. The composed strategy (idjry, [V]) does not involve [N] and
is thus equal to [[y]]. If M = x, then this time [x] is the copy strategy between [U]] and
[T]. Composing with (idyry, [V]) gives [N]. In both case we get the desired result
since y[N/x] = y and x[N/x] = N.

We show how to deal with the induction step in the case of the measurement rule;
the other cases are similar. Assume that the substitution lemma holds for I', x: T +
St signal;, [,x: TrW:angleand T, x: T + Q: gbit’’'). We want to show that it also
holds for

[,x: T +meas,sW Q: gbit’.

On one hand, we have that
(meas; sWQ: qbit’) [N/x] = meas’, s[N/x] W[N/x] Q[N/x].
On the other hand, we have that by hypothesis
idpry O INT 5 <[LsT, T, T2
= (idpry O [INT; [LsT idpry © N1 TW idyry © [INT; TOTD
= ([LsIN/x10, IWIN/ XD, TQIN/ x11D),
and thus we get the desired result by composing with A~! (meas?). O

Proof of proposition 4.9. Suppose that we have [M] = [M’] for two semi-closed
terms M, M’ of type T. Take any context C[—] with a hole of type T and any I'-store X,
and suppose that

2 CM] P2,V

It follows by proposition 4.6 that for all well-opened sab € 7 ([¥’, V]]) we have that
[Z,CIMIN (b | sa) = p[[Z, V] (b | sa).
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By hypothesis,

[z, CIM]] = [Z1; Gdyry, TMT); [CLx]T
= [0 Gidyry, [M7]; [CTxIT
= [z, cim].,

and thus for all well-opened
sab € T([Z', VD

we have that
[Z.CIMT D] sa)=p[Z,V](b] sa).

By adequacy we conclude that C[M'],Z ||’ X', V.
By the symmetric argument, we get that M ~ M. O

The main reason to introduce game semantics in classical programming language
semantics is to be able to prove full abstraction. This property is the converse of
soundness: it say that if two terms are contextually equivalent, then their denotations
are the same.

Full abstraction is usually showed by proving the contrapositive proposition: if two
terms M; and M, have different denotations [M,]] and [[M-]], there must be a context
C[-] which can distinguish them. Proving this requires the construction of a context
C[—] associated to a given strategy. In game semantics, strategies are identified using
an equivalence relation defined as follows. Let the test arena test be the arena with only
one question g and one answer a. A test for an arena A is a strategy @: A —o test. A
strategy o in A passes the test @ if 0; @ = T, where T is the strategy where the question
q is answered with the answer a. Two strateges o and 7 are equivalent if they both
pass the same tests. It is shown in game semantics that when working with strategies
up to this equivalence relation, every important property (such as proposition 4.6 and
adequacy) stay valid. To prove full abstraction, one must produce a context C[—] that
distinguishes M| and M, when [[M,] # [M-]. Using the equivalence relation, this last
inequality means that there is a test @: A —o test which is passed by one of the two
strategies but not by the other. The required context can be constructed from this test
if the strategies of the category where the denotation is defined are characterised very
tightly so that this construction is possible. We were not able to get such a result in the
case of MCdata and for the other languages presented in this thesis because we do not
have an appropriate characterisation of quantum strategies.
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Chapter 5

A-calculus with quantum stores

In the last chapter we used quantum arenas to define a denotational semantics for a
typed variant of the measurement calculus. Based on attempts to construct a quantum
arena based denotational semantics for Selinger and Valiron’s language, which was
presented in section 2.2.2, we developed two new quantum A-calculi using different
approaches to incorporate quantum states in classical languages. The first one uses
quantum stores and is the topic of this chapter. In the second one, quantum states are
used directly as data in the language; the description of this second language is the topic
of the next chapter. We begin this chapter with a review of the main observations that
lead us to introduce two new quantum A-calculi. Then we present the first language,
based on quantum stores, and its semantics.

5.1 Critique of the quantum A-calculus

In the first presentations of the quantum A-calculus developed by Selinger and Val-
iron [Val04, SV06a] no denotational semantics was given. They proposed in [SV06b]
a denotational semantics for the linear part of the quantum A-calculus; their interpreta-
tion is in the category CPM of completely positive maps on finite dimensional Hilbert
spaces. The category CPM inherits a compact closed structure from the category of
finite dimensional Hilbert spaces. By working in this category the difficulties of using
trace non-increasing maps described in section 3.1.1 are avoided, but at the cost of hav-
ing programs interpreted as trace-increasing completely positive maps because the in-
terpretation of A-abstraction can produce such maps (for example the term Ax, y. x®y).
This is incompatible with the expectation that terms of a language that described ma-
nipulation of quantum data should be interpreted as superoperators, which correspond
to physically realisable operations.

We explored the possibility of using quantum arenas and strategies to construct a
denotational semantics for the full language. The main difficulty encountered is with
the tensor type operation of Selinger and Valiron’s quantum A-calculus: it can be used
on both quantum and classical types. So if we want to inductively associate an arena
[[A] to each quantum A-calculus type A, we need to define [[A ® B] using the classical
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product of arenas [[A]] © [B] in general, but by [A]] ® [B]] when both A and B are gbit
types. While with this idea we are able to deal with types, it creates difficulties for the
definition of the denotation of terms. In particular, we need a strategy

[[x: gbit,y: gbit - x® y: gbit ® gbit]]

which should intuitively take two gbit states and tensor them. This should be a strategy
in the arena

[gbit]] © [[gbit]] — [[gbit]] ® [gbit]],

but there is no natural strategy of this type with the required behavior. Such a strategy
needs to specify how to answer a question in [gbit]] ® [[gbit]] by measuring each gbit
component separately. As we explained in section 3.4.2, this is not possible in general.
If instead of interpreting the type hypothesis x: gbit,y: gbit in the above typing
judgement as [[gbit]|®[[gbit]] instead of [[gbit]|©[[gbit]], we run into a different difficulty.
This time we have problems with abstraction. Suppose we want to define a strategy

[y: gbit - Ax. x® y: gbit —o (gbit ® gbit)]| .
The typing judgement must be introduced using the abstraction rule

x: gbit,y: gbit F x ® y: gbit ® gbit
y: gbit - Ax. x ® y: gbit —o (gbit ® gbit)

We thus need an adjunction between strategies in

[qbit]] — ([gbit]] — [gbit]] ® [gbit]])

with those in the arena

[gbit]l ® [gbit]] — [gbit]] ® [gbit] .

This again requires that one constructs a strategy which tells how to answer measure-
ment questions in [[gbit]] ® [gbit]] using separate measurements in the two gbit compo-
nents.

There is also another issue with the quantum A-calculus. The language does not al-
low quantum states to be introduced directly (as, for example, we allow in the language
MCdata in the previous chapter): quantum states can only be referred to by using vari-
ables of type gbit. In the type system, quantum states are considered as data of type
gbit which can’t be duplicated, but at the same time the language only allows one to
have references to qbits, which, intuitively, can be duplicated. There are two ways to
introduce quantum data into programs: a direct way using a syntax to denote quantum
states and an indirect way using references to external quantum stores. In the first case
quantum data should be treated linearly to make it impossible to duplicate an unknown
quantum state, but in the second case references to gbits should not have this restric-
tion. We thus introduce two different languages, one for each of these approaches. We
describe the second one in this chapter and the first one in the next chapter.
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5.2 Simply typed A-calculus with quantum stores

The A-calculus with quantum stores language (QSL) introduced in this chapter avoids
the difficulties described in the last section. The syntax of the language is built upon a
simply typed A-calculus with pairing and conditionals; quantum operations are added
using quantum stores which have a syntax analogous to classical stores. In a classi-
cal higher-order programming language with stores, like idealised ALGOL [Rey81],
stores are references to values. They are used through various operations like derefer-
encing and assignment. The quantum stores we use below are defined according to the
following parallel between classical and quantum references:

Classical stores Quantum stores
Dereferencing Measurement
Assignment Preparation
Command with side effects Unitary transformation

Juxtaposition by products  Juxtaposition by tensor products

In this perspective, a quantum state is viewed as existing in an external store which can
only be accessed indirectly. In this picture, the quantum counterpart of dereferencing,
which classically returns the value stored, is quantum measurement. The counterpart
of assignment is state preparation. Note that, while classically it is possible to assign a
value to a store multiple times, this is not the case with quantum stores, as a quantum
state cannot be destroyed. Instead, preparation creates a new quantum state. Classi-
cal stores can be equipped with commands with side effects, for example, an integer
incrementation command. This role is played by unitary operations in the quantum
counterpart. Finally, when many classical stores are used in some programs, they are
simply juxtaposed using products. In the quantum case, juxtaposed quantum stores
must be described by tensor products to allow them to hold entangled states.

5.2.1 Syntax

The syntax of QSL is that of a classical simply typed A-calculus with pairing, condi-
tionals and sequential composition, augmented with new constructs that permit manip-
ulation of quantum stores. To accommodate these, we need to introduce a new syntactic
device. When multiple quantum stores are combined, they can be measured by using a
projective measurement on the whole space. Because of this, we must be able to refer
to the combined store as a whole, while keeping the possibility to refer to a part of
the system. To this end, we introduce tensor of variables in the syntax. An extended
variable is an expression of the form x; ® - - - ® x,,, where the x; are variables such that
x; # xjif i # j. Two extended variables x; ® --- ® x,, and y; ® - - - ® y,, are disjoint if
x; # y; for all i, j. Two such extended variables can be joined to form a new extended
variable
K@ ®X, ®Y @ ® Y.
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Note that when we use x| ® - - - ® x,, to refer to an arbitrary extended variable, the case
n = 1 is also possible. We use the notation

xl®"‘®xngyl®"'®ym

when each of the variables xi,..., x, occursin y; ® - - - ® y,, and the order of the occur-
rences is the same in both extended variables. We say in this case that x; ® - - - ® x;, is a
subvariable of y; ® - - - ® y,,. To simplify the notation, we use X instead of x| ® - - - ® x;,,
leaving the number » implicit.

The terms of QSL are defined by

M,N,P:=X|0]|1]|skip|Ax.M | MN |if MthenNelse P |{M,N) |
fstM |snd M | M;N | meas™x | newxin M | U*x | prep ywithxin M

where X and y can be any extended variables, x,z C x and U can be any multiple-
gbits unitary transformation. All the classical operations used are standard operations:
(M, N) is pairing, fst and snd are the two associated projection operations, M; N is
sequential composition, and skip is the operation doing nothing. The quantum part of
the language consists of operations to manipulate quantum stores: measurement, gbit
creation, unitary modification and preparation of extra gbits. The unitary operation
syntax U®X means that the unitary transformation U of rank n is applied to the gbits
7 =21 ®-- Q z, of the quantum store x. While x is an extended variable term, the
extended variable 7 is used as a label and is not considered a free variable of U X.
We will also use the notation Uz to denote this operation when the quantum store
X is being implicitly specified in the context. The measurement operation meas*x
measures the gbit x in the quantum store X in the canonical basis and returns a boolean
value corresponding to the measurement result. As for unitary operations, the variable
x is only a label to point out which gbit of x is measured. We will also use the shorter
notation meas x to denote meas*x when it is clear in the context which variable x
is used. For the preparation operation, prepy withxin M means that a given quantum
store X is extended to a larger store by adding extra gbits prepared in the |0) state. In
M, the whole extended store is referred to as X ® y.

As in any A-calculus, the A operation is a binder. Observe that it can be used
on extended variables, i.e. terms like Ax ® y. meas x are allowed. The preparation
operation is also a binder: X is not free in the term prepywithxin M. The set of free
extended variables of M is denoted by FV(M). A term M is closed if it has no free
extended variables. We use the notation M[N/x] to denote the capture-free substitution
(no occurrence of a free variable in N is bound in M) of the term N for every occurrence
of x. Note that the syntax limits substitution in unitary and measurement operations to
changes of variables. For example the substitution

UYX[N/X] = U ¥

is defined only when N = x’ and y’ £ X’ is the subvariable corresponding to y C x.
For clarity, we use the alternative notation letx = Nin M for (Ax. M)N. When
multiple variables are bound in this manner successively, we use the notation

Ietx1 =N1,...,xn=NninM
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Table 5.1 QSL typing rules

[Lx:ArXx: A I' - 0: bool '+ 1: bool I' + skip: com

I'tM:A=B I'EN:A ILx:A+M:B I'e M: A I'eM,: A,
'+ MN:B '-Ax.M:A=B T+ (M, My): Ay X Ay
I'rM: AXB I'tM:AXB I'+ P: bool I'rM: A I'tN: A
I'rfstM: A I'tsndM: B I'rifPthenMelseN: A

I'FM: com I'EN: A
TrM.N:A A =comorbool T % gstore F meas* x: bool

T,X: gstore + U’ X: com

I'x: gstore - M: A INx®Yy: qstore - M: A
'FnewxinM: A I',x: gstore + prepywithxin M: A

for (Ax,. ... (Ax;. M) Ny ...) N,. Note that the terms Ax;(Ax; ... (dx,. M)...)and Ax. M
are different: in the first one the variables x, ... x, are considered separately while in
the second case X = x; ® - - - ® x,, is considered as a single variable.

5.2.2 Types
The types of QSL are the following:

A,B = bool |com |AX B|A = B|gstore.

The type bool is the type of boolean constants, A X B and A = B are respectively
the types of pairs and functions. The type com is the type of commands which can
be composed using sequential composition. The type gstore is the type of a quantum
store. A quantum store does not have a fixed dimension, as the number of gbits it holds
can vary in the course of a computation if preparation operations are used.

The typing rules for the classical part are given in table 5.1. The rules for the
classical part of the language are the standard rules of a simply typed A-calculus where
extended variables can be used. The rules for involving quantum operations encode
the idea that the content of quantum stores can be measured, modified using unitary
transformations and that quantum stores can be prepared or extended with an ancilla
state. Note that the unitary operation rule allows unitary operations to be applied only
to part of a quantum register. An important feature of QSL is that the typing rules
do not forbid having multiple references to a quantum store. For example, the typing
judgement x: gstore + (meas x, meas x): bool X bool is valid. Copying a reference to
a gbit is not the same thing as duplicating the gbit. Yet the language does not allow
unknown gbit duplication: to duplicate the content of a quantum store x, one would
need to prepare a new gbit y and apply an appropriate unitary transformation to the
quantum store x ® y. There is no such unitary transformation.
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5.2.3 Operational semantics

The operational semantics of the classical part of the quantum store language is stan-
dard. For the quantum part we use a quantum variant of stores. Note that we expect
that the reduction relation of this language depends on reduction order, since, as we
pointed out in section 2.2.2, it is the case in the presence of operations with side-effects
like quantum measurements.

A quantum store Q is a function taking extended variables x; ® - - - ® x,, taken in

a finite domain of extended variables |Q| to a state |x ... x,)g € (C2>®n. The domain
|Q| is assumed to contain only disjoint extended variables. A quantum store holds the
state of the quantum registers that are used in a quantum A-calculus term. We drop the
index Q when the context makes it clear to which quantum store a state belongs.

A quantum store Q can be modified in various ways. First, it can be extended by the
addition of a new quantum register; since this is similar to the extension of a classical
store we use the notation

Ollxy ... xn) = |@)]

to denote the extension of Q to a store with domain |Q|U{x; ® - - - ® x,,} and associating
to the new extended variable x ... x, the state |).

Another important operation is preparation of extra gbits appended to a cell of a
given quantum store Q. If x; ® - - - ® x,, € |0, then

Ollxy o xpy1 o Ymy = |x1 .. x[0... 0]
is the quantum store with x; ® - - - ® x,, removed from |Q| and
X®  ®X, QY ® QY
added, and with associated state

X1 .o Xp 1Y) = 11 ... x,)[0 ... 0).

Note that by definition of quantum store, {x,...x,} and {y;, ...y} are disjoint.

The final operation that we need is the modification of one register using a unitary
operation or a projection. Given a quantum store Q and a linear map A over the Hilbert
space associated to the extended variable x; ® - - - ® x,, € |Q|, we denote by

Ollxy ... x0) > Alxy ... xp)]

the quantum store where |x; ... x,) is replaced by Alx; ... x,).

A QSL program is a pair Q,I' + M: A where Q is a quantum store, ' + M: Ais a
valid typing judgement such that all the gstore variables in I" are in |Q]. We say that a
program Q, M is closed if [I'| C |Q|. To simplify the notation, we will often leave the
types implicit and write Q, M instead of Q,T' + M: A.

A value for QSL is a term of the recursively defined form

Vi= x1®--®x,|0]|1]|=|skip|Ay.M|{(M,N),

where x can be any extended variable and M is any term with y € FV(M).
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Table 5.2 QSL probabilistic reduction rules

I— o.M Q,ax. M Q' ,M'[N/x]1 1 Q",V
QvVU'QsV Q,MN qu Q”,V

Q,Mu[) Q/’V Q’N U]) Q/’V
O.fst(M,Ny |7 Q',V Q,snd(M,N) |’ Q",V

0, M |7 O, skip Q. N Q" V
O, M;N P Q" V

0.PY Q.0 o.NUI Q" V o.PY Q1 o.My Q" v
Q.if Pthen Melse N |77 Q”,V Q.if Pthen Melse N |77 Q",V

Q.U ® - ®x, I Qllxi - %) > U, . x,)], skip

0, meas x; YOl Oy . x,) > [019]x; ... x,)/III01 |y ... )11, O

0, meas x; Il Ol x> [ x0T . ) 1

Ollx;...x,) > 10...0)],M |? Q',V
o,newx; ®---®x,inM | Q,V

X1®"'®Xn¢|Q|

Ollxt ... X1 ... Ym) 2 @)X, M P O,V
Ollxi ... x,) = lp)]l, prepywithxin M |7 Q',V

We define the operational semantics of QSL as a big-step probabilistic reduction
relation between programs. The notation

o.M o,V

means that when M is run with a quantum store in state Q, it reduces with probability p
to the value V with the quantum store left in state Q’. When p = 1, we omit the proba-
bility argument and write simply O, M |} Q’, V. This relation is defined inductively by
the rules in table 5.2. Most of these rules are the usual reduction rules for the simply
typed A-calculus with sequential composition, conditionals and pairing. The reduction
rules for the classical part of the language do not affect the quantum stores. The rules
involving measurements, preparations or unitary transformations change the quantum
stores according to quantum mechanics. For example, the rule for measurement says
that if x; is measured with a quantum store in state Q, then the state |x; ... x,)o where
x occurs is projected with the projection [0]% or [1]¥, depending on the measurement
result, and normalised. Note that this is the only place where there is a probabilistic
branching in the reduction. For a unitary transformation operation U, the part of the
quantum store Q affected by U is updated to Ulx; ... x,) and the term reduces to the
command skip.
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Figure 5.1 QSL teleportation

teleport,.=
prepy ® zwith xin

Hy;,NXy®z;

Hx; Xx®Yy;

let by = meas x, by = meas yin

if b, then
if by then U1y zelse Uy z
else

it b, then Uy zelse Ugp z

Example 5.1. Consider the following two terms M, and M, defined respectively by
M,: NUx®Yy M, : ifmeas xthen (U y) else skip
where AU denote the controlled version of a unitary operation U. This is defined by
NU|b1)Ib2) = |b1)lby © b)),
where @ is the exclusive-or operation. We have that
X®y: gstore - M;: com and x ® y: gstore - M;: com.

In a quantum store state Q which assign |p) to x ® y, M| reduce to skip and the state O
is modified by the unitary operation:

0, M I Q[lxy)y — AUlxy)], skip.

The term M, also reduces to skip but leaves the quantum store in a different state:

Ollxy) = l@)], My 17 Q[lxy) = [0]"|xy)], skip
O[lxy) - l)], My U7 Q[lxy) > U[11%xy)] , skip

where p = tr ([0]*|@){¢]).

Example 5.2. It is possible to program the quantum teleportation protocol [BBC*93]
in the quantum store language. It is represented as a term teleport,., defined in fig-
ure 5.1, which transfers an unknown state from some quantum store x to another quan-
tum store z. In the definition of teleport,, the operation H is the Hadamard transforma-
tion and

UO() = 1, U(n = X, U10 = Z, and U11 =7ZX

are the four possible correction operations, one of which must be applied to z to change
its state to that of the input quantum store x. If follows from the typing rules that

x: gstore + teleport,,: com
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The command teleport,, performs the teleportation protocol to transfer the state of the
gbit register x to the gbit register z. This can be verified using the operational semantics
rules: it is possible to derive that

0, teleport,. | Q [Ixyz) > Ugth [bx]x[b_v]ycnotxnylxyz)] , skip,

where we label each unitary transformation and projectors by the subspace associated
to the label variables.

Example 5.3. Any quantum circuit can be represented as a QSL term. Suppose that
the circuit takes a state |x; ... x,) as input which is initially tensored with the state

[Yi...ym) =10...0).

The unitary operations Uy, ..., Uy are applied to this state, and at the end the gbits

Xiseo e Xns Yoo Ym
are measured. This is represented as the term M defined as follows:

prepy ® - ® y, Withx; ® ... x,, in
Ulxi®  ®x%,0y®  ®Vy;

Urx1® X, 9y ® - ® Vs
(meas xi, ..., meas x,, measyi, ..., meas y,)

We can derive that
X1 ®---®Xx,: gqstore - M: bool ® - - - ©® bool.

Let Q be a quantum store with |x; ... x,) — |¢). We have that

O.M " Q' (by,....by),

where by, ... b, and are the results of the final measurements operations and

Q’ = Q [|X1 e xn> = [anrm]ym cee [bﬂ+1]yl [bn]x’l s [bl]X1 Ui ... U |()0>|0 cee 0>] .

5.2.4 Denotational semantics

We now use quantum strategies to construct a denotational semantics for the quantum
store language. We want to define an arena [[A]] corresponding to each type A and
a strategy [M] : [I'T — [A] corresponding to each term I' + M: A. We will use
quantum strategies defined with intervention operators, as described in section 3.6.3.

The gstore arena is the arena with quantum interventions &; = {8;} as questions
and natural numbers m as answers. The question &, enables its possible measurements
results.

A play in this arena is a sequence of moves

Sopymy - - - gy
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where the quantum interventions Eqp;; may all be different. We need a strategy [p] in
gstore which describes a quantum state p.

The probabilistic strategy [p] in gstore associated to a density matrix p is defined
by [p]l(e) = 1 and

() Exiyms .. Enmy) = tr(EX .. &N (p)) .

Note that since we use the convention that impossible composition of superop-
erators yields the zero operator, the above definition assigns probability zero to plays
which involve domain inconsistencies. For example, if Opponent asks another question
&Eopp; after receiving an answer to &qppp, all possible Player answers will have probabil-
ity zero when the domain of &yyp; is different than SD(H,,,). When the domain and
SD(H,,) match, the question &vy; is answered using the normalised state

&)/ tr (&1 ).

It is easy to verify this satisfies the definition of probabilistic strategies. Note that
the strategy [p] is thread dependent: the first question is answered using the probabili-
ties given by p,,, = tr (S,T’,,[]l](p)), but a second question in a new thread will be answered

with the probability distribution given by tr (8;1[22 ]8;[1”(p)) /Pm,» 1.e. using the updated

state 8,?,{1“(;)) /pm,. Thus in general the probability distribution used is different in dif-

ferent threads, and is updated according to the laws of quantum mechanics.

Example 5.4. We can define a strategy which describes a unitary operation. This is a
strategy [U] in the arena gstore —o com. Suppose that the superoperator corresponding
to U is U. A typical play using [U] is “run {Up}, O0done”. The {U}, question in the
gstore arena changes the state used to answer future questions in the arena. Notice that
Player does not learn anything about the state in this interaction with Opponent because
there is only one possible measurement result. The strategy [U] really describes the
effect of U since one can verify that [p]; [U] = [U(p)]; skip using the definition of
composition of strategies.

Example 5.5. We define a strategy which represents performing a projective measure-
ment of the state of a quantum store as follows.

meas

gstore bool
?
Cy
m
m

The measurement strategy makes Player answer the first question in the output Boolean
component by asking about the result of a measurement in the computational basis of
the input gbit with the quantum intervention C = {$y, P}, where P, is the projective
measurement superoperator defined by #,,(0) = [m]p[m]. Player then copies the an-
swer m to the output component. In contrast to the case of unitary transformations,
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Table 5.3 QSL denotational semantics

[C.%: Arx: Al : [T]®[A] —— [A] [T + skip: com] : [T] —2> com

[T F0: bool]l : [TT ——> bool [T F 1: bool] : [T —— bool

ITFMN: Bl : [T] —2M A7 = [B]) © [A] —22> [B]]

[T+ azM: A= B]: -2 14 - B

M Q[ 1]
[T r(Mi,My): Ay x Ax]l 2 [T ———— = [Ai] o [A2]]

[T FistM: AT : [T —2s 4] 0 [B] —2> [A]

[T FsndM: B]: [TT — 1470 [B] —2> [B]

[T+ if Pthen Melse N: A] : [T] — YD ool 0 [A] © [A] =2 [A]]

[T+ M;N: Al : [T Mcomom]] ™ [Al, A = com or bool

Tgstore meas

gstore bool

[T, %: gstore F meas*x: bool] : [T © gstore

— T — Tgstore [U]
[[F, X: gstore - U7 x: com]] : [[I'T © gstore iy gstore —— com

(1lid J[10...0)0...0[1)
[T+ newFin o AT : [ —ort) [T] © gstore — 4]

[T, X: gstore - prepywithTin M: A] : [T o gstore — 'V 4]

Player does learn some information about the input state in the part of the exchange
happening in the gstore arena, and this information is used to provide an answer in the
bool arena.

We now use quantum strategies to construct a denotational semantics for the quan-
tum store language. For each type A, we define an arena [[A]], and given a term
' M: A, we define a strategy [M] : [I'] — [A].

For types, the definition is given by the following inductive construction :

[bool]l = bool [com] = com [gstore]] = gstore
[Ax B] = [ATo Bl [A= Bl =I[A]l — [BI]

The arena com is defined with the moves “run” and “done” as in chapter 4. The quan-
tum store type is interpreted using the arena qstore.

Given acontextI' = x1: A,...,x,: A,, we set [['Jtobe [A|] ®---©[A,]l. The
interpretation [I' - M: A] is defined by induction on the derivation of I' + M: A in
what follows.
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We begin the definition of [I" - M: A]] with the base cases of variables and con-
stant terms. The interpretation of I', x: A + x: A uses the projection strategy m4. The
Boolean constants 0, 1 are interpreted as their corresponding deterministic strategies in
bool. The constant skip is interpreted as the unique non-trivial deterministic strategy
skip in com.

The strategy

[0 w e o]

corresponding to a unitary transformation is defined as the strategy [U]: gstore —o
com. In the case of measurements, [meas x;] is interpreted using the meas strategy.
We now turn to the inductive cases. The definition of [[M;; M;]] follows the stan-
dard idea in game semantics: it is defined as the composition ([M,], [M:]); seq,
where seq is the strategy com © com — com defined with the following typical play:

S€Qcom
com © com——oCcom
run
run
done
run
done
done

Using this scheme, the commands M, and M, are successively ran when seq is com-
posed with ([M ], [M>])-

For terms of the form ' + Ax. N: B, where I',x: A + N: B, we define [[Ax. N to be
A (IN]), using the adjunction

[NT: [T o IAD — [B]
A(IND = [TT — [AD — [B]
The other classical operations are also interpreted using the usual game semantics

ideas. We refer the reader to [Har99] for a detailed account.
For quantum store creation using new, suppose that the denotation of

Ix® - -®x,:qstorer M: A

is already defined. The term new x; ® - - - ® x,, in M is interpreted as the composition
(idgry, [10...0)0...0]); [M]. The strategy [|0){O0|] is used to initiate the state of the
new quantum store.

The last case is for the preparation typing rule. The strategy

[prepywith xin M|
is defined as the strategy

prep (IM1) : [I'] © qstore — [A]
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defined with the following idea. Let # be the preparation superoperator taking p to
p®10...0)0...0|. Player plays using prep ([M]) by making the moves prescribed by
[M] except that before playing his first move in the gstore arena, he must initiate an
exchange in this arena which forces Opponent to add the |0 - - - O) state to the state p she
uses to answer Player’s questions about the state of the quantum store. This is achieved
by playing a {F(},» quantum intervention question in the gstore arena before any other
move is played there:

IC] o gstore—"P™ 4

{Fols
0
Fou

m

This completes the definition of the denotational semantics.

5.3 Soundness

To study the relation between the operational and denotational semantics, we need to
take quantum stores into account. We use the standard approach used in game seman-
tics of classical stores, described in the last chapter for the language MCdata: we define
a strategy

Q. M1 : I: [Al

for each pair Q, M where M is of type A. This strategy is defined as the composition
of [M]] with a strategy [ Q] representing the state of the quantum registers in Q. For
each extended variable x; ® - - ® x,, € |Q|, the state |x; ...x,)o can be described as a
strategy [|x; ... x,)] in I —o qstore. The strategy [Q] associated to the quantum store
Q is defined as the ®-product of all the strategies [|x] ... x,)], x] ® --- ® x, € |Q|.

Lemma 5.6. (Substitution for QSL) For any QSL termsT,x: A+ M: BandT'+ N: A
with x € FV(M), we have thatT' + M [N/x] : B and [M[N/x]] = (ddyry, INT); [M].

Proof. By structural induction on the construction of M. Since the proof for the classi-
cal cases is well-known, we show how some typical classical cases are dealt with and
then focus on the cases involving quantum operations.

Suppose I',x: A+ M: B.

If M is a variable X, then X[N/x] = N and it is immediate that I' + X[N/x]: A.
Moreover, [X[N/x]]] = N1 : [T1 — [A] which is equal to {idyry, INT); [x]] = [N]
since [[x] is the projection strategy on [A].
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For a term M of the form Ay. M’, ¥ must be different than X because we suppose
that x € FV(Ay. M"). The induction hypothesis is that the proposition holds for

Ix:A,y:C+M: B,
i.e. thatT + M’[N/x]: Band [M'[N/x]] = (idyry, INTY; [M’]. Since
(Ay. M)IN/x] = Ay. (M'IN/x]),
we have that T + Ay. M’[N/x]: B and that

[(Ay. MOIN/]] = A ([M'IN/]T)
= A (Gidyry, INTD; [IMT)
= (idyry, [NT); A ([M7])
= (idyry, INTY; [Ay. M),
where the third equality follows from the naturality of the adjunction A.
The quantum cases are dealt with in a similar manner. Consider the unitary oper-
ation case. Suppose that M = U” X, with y C X. Since X: gstore, N must be a gstore

variable x’. Let y’ be the subvariable of x’ corresponding to the same gbits as ¥ in X.
We have that

I'r U’X[N/x] = U” ¥ : com
and that B _ -
[z v/m] = [0 2] = (iar. [])) s iam.
The measurement case is similar to the unitary transformation case.
Finally, consider that M is a preparation term

[,x: A,y: gstore - prepzwithyinM’: B
and assume that the lemma holds for
[,x: A,y®7Z: gstore - M': A.
Substitution of N for X in M yields
(prepzwithyin M") [N/x] = prepzwithyin (M [N/x]),

and thus by induction hypothesis I',y: gstore + M[N/x]: B. Furthermore, we have by
definition of the preparation strategy that

[(prepzwithyin M") [N/x]]| = [[prep z withyin (M’ [N/X])]l
= prep ([M" [N/X]]))
= prep ((idyry, [INTD; [M'])
= (idyry, [INT); prep ([M'])
= (idyry, [NV1); M1 |
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It is now possible to state and prove the following result.

Proposition 5.7. Let M and V be two terms of ground type. If Q, M P Q’,V, then for
all well-opened sab € T ([[Q’, V1) we have that

[Q. M1 (b|sa)=plQ.VI(D]sa).

Proof. The proof is a structural induction on the derivation of O, M |}’ Q', V.

We show how to deal with some typical classical cases. First, we deal with the base
cases.

For the cases of the form Q,V || Q, V, the proposition is trivial.

In the case of a unitary transformation operation U, suppose that

Q,Ux1® - --®x, | Ollx1...x,) > Ulxy...x,)],skip

holds. By definition of the denotational semantics, we have that [[Q, g f]] is the com-
position

It [ol ] [x1®--@x,] gstore

com

A run move in the final com arena is answered with the question {Uy}, in the gstore
arena and then copied by the projection strategy to the [I']] arena, where an interaction
begins with [Q]] in which the unitary transformation move {4}, is made, affecting all
subsequent interactions in the gstore component. The O answers that Opponent gives
back to Player is copied back to the initial gstore arena, and then a “done’”” move is
made in the com arena. In any further interaction with the quantum store strategy [Q]]
Player will behave as if he is using the strategy

[[Q[le s X)) e UP)xg ...xn)]]].
If Player uses the strategy
[t .. x) = ULt 51, skip]

then the behaviour is the same: the initial “run” move is answered with “done” without
interacting with the strategy

[O[lx]...x) = Ulxy ... x; )1 -

The two rules for quantum measurement operations are dealt with similarly. Sup-
pose that

0, meas x; "D 9 1y x> [0 ) /IITOT - xa)] .
By definition we have that [[Q, meas x;] is the strategy [QO]l ; [x;] ; meas in the arena
I —o [T']] —o qstore — bool.

Any interaction starting with the question ? in bool is answered by measuring in the
canonical basis the gbit of the arena qstore. The answer to this is given according to
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[Q] and is O with probability |[[0]"|x; ... x,)||. Any further interaction with [Q] will
be made according to

[Ollx1 ... xx) = [01%|x1 ... x 1],

and the answer to the initial question in bool is 0. This amounts to saying that [Q, meas x;]]
behaves like

[l x) = 101k ... )] O]

with probability ||[0]%|x; ... x,)||. The other measurement case is similar.
We now deal with some typical induction cases.
For conditionals, suppose that the proposition holds when

Q,P|” Q,0and Q',N |7 Q", V.
Assume that Q, if Pthen M else N ||[P? Q”, V. By definition, we have that
[Q,if Pthen M else N]|
is the composition

PIL,IMI.IN
It Lol ] (LPLL.IMI.INT) bool © [A] © [A]] cond

(Al

An initial move in the final [[A]] arena will make Player ask for a Boolean in the bool
input of cond. Opponent will answer using [Q]; [P, which, by hypothesis, with
probability p will make her answer as if using the strategy [Q’] ; [0]. After that Player
will play according to the strategy [Q’]l; [NV]l, which with probability ¢ makes him be-
have as if using [Q”] ; [V]. After hiding, we see that using [ Q]! ; [if P then M else N1,
Player will play as using the strategy [Q] ; [V] with probability pq. The other condi-
tional case is treated similarly.
In the case of application, suppose that the proposition is true when

O.M P Q,Ax. M’ and Q', M'[N/x] |7 Q", V.
Assume that O, MN |[P? Q”, V. By definition we have that [Q, MN] is

I [ol [T IMILINTD ([AT — [B]) © [Al

eval

BT .

A move in the final [B] is copied to [A]] — [B]], where it is answered using the
strategy [Q, M]. By induction hypothesis, with probability p this answer is given as
if using the strategy [[Q’, Ax. M’]]. So with probability p the plays of [Q, MN]| are the
same as those of [Q’, (Ax. M’)N]. By lemma 5.6, this is the same as [[Q’, M[N/x]],
which by induction hypothesis is the same as [Q”, V]| with probability g. So the plays
of [Q, MNT] are the same as those of [Q", V]| with probability pq.

For the new operation, assume that the proposition holds when

Ollx1...x,) = 10...0),M | O, V.
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Suppose that
o,newx; ®---Q®x,inM| Q,V.

By definition we have that [new x; ® - - - ® x,, in M| is the composition

,[10...0)¢0...0
It ol ] (1,[10...0)¢0...0[1) [T] © gstore

[Al

Since [Q[|x] ... x,) — 10...0)]] is equal to [Q] ; I®[|0...0){0... 0[], the above com-
position is equal to [Q[|x;...x,) + [0...0)], M]l, which by induction hypothesis is
Q. Vvl

The most interesting induction case is the preparation case. Suppose that the propo-
sition holds when

Ollxi-..x)lyr- .. ym) = 9)I0...0)] U Q" V.

Assume that
Ollx1...x0) > |@)], prepywithxin M || Q’, V.

By definition of
[T,%: gstore + prepywithxin M: A],

any play in [I'] © gstore — [A] will be played with player using the strategy [M]],
except that a preparation move is made in gstore. This preparation move is answered
by Opponent using the strategy

[O[lx1-..x) = )],

which make her pick her answers using the strategy [l¢){¢|]. After the preparation
move, Opponent will play as if she is using the strategy [|¢){¢|[0...0)(0...0|], which
is

[Q[Ix1-. xdly1 .. ym) = 1@)I0... O]

The overall play is thus just like what would happen if Player uses [M] composed with
this last strategy. We get the desired result because the induction hypothesis implies
that composed strategy dictates the same moves to Players as the strategy [Q’, V]. O

We now turn to the converse problem: proving adequacy for the QSL.
Aterm I+ M: Ais said to be semi-closed if FV(M) contains only variables to type
gstore. The ground types are all the constants types.

Proposition 5.8. (Adequacy for QSL) Let M be a semi-closed term of ground type. If
for all well opened sab € T([Q’, V1) we have that

[O.M] (| sa)=plQ,VIK] sa),

then we must also have that

o.M Q.V.

We use the standard proof technique that uses a computability predicate. We refer
the reader to [Gun92] for an expository account of adequacy proofs for the language
PCF which uses this technique. The usual definition of computability predicate is
adapted to quantum stores as follows.
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Definition 5.9. (Computability for QSL) Let T'1,I, + M: A, with Ty containing only
variable of type qstore. We say M is computable if

1. Ty F M: A A =bool, gstore, T or com and if for all sab € T ([Q’, V]) we have
that [Q, M1 (b | sa) = p[lQ", V(b | sa), then Q,M P Q',V,

2. T, x1: A, .o, Xt Ay F M2 Ais Ty v M[N{/X1,...,N,/X,]: A is computable
for all computable semi-closed termsT{ + Ny: Ay, ..., T1 F N,: Ay,

3. T\ + M: A — B, M semi-closed and for all semi-closedT'y + N: A we have that
I't + MN: Bis computable,

4. M =XxwithT'| + X: qstore and both T’} + meas x;: bool and 'y + U'y: com with
y C X are computable.

Proposition 5.8 is a direct consequence of the following lemma.
Lemma 5.10. All QSL terms are computable.
In order to prove this lemma, we need the following result:
Lemma 5.11. For any type A, there exist a semi-closed term M such thatT' + M: A.

Proof. By induction on the construction of A. If A is bool or com, we can take M to
be the constant true or respectively skip. If A = gstore, then taking M = x we have the
semi-closed term x: A + x: A.

If A is a product B; X B, assume inductively that there are terms I'j + M;: B
and I, + M;: B,. Without loss of generality, we can also assume that |['j| N [I;| =,
renaming variables if necessary. Then M = (M, M) is aterm such that'}, [, v M: A.
Similarly, if A = By = B, assume that there isaterm I' - N: B;. Then if x ¢ |[], we
can take the term I' + Ax. N: By = B,. O

Proof of lemma 5.10. By induction on the construction of M. By the second and third
clauses of the definition of computability, we can assume that M is constructed out of
semi-closed terms. We explain the most interesting part of the proof, leaving out the
cases which are standard classical cases.

For the base case, M must be a constant, a classical variable x or a quantum store
variable X. If M = X is a quantum store variable, we must apply the last clause of the
definition of computability. We need to check that both

I't Fmeasx;: boolandI'y F Uy: com,y C x

are computable. In the first case, suppose that [[Q, meas x;]] makes Player behave as
[Q’, V] for some boolean value V. This means that measuring the gbit i of the quantum
store X with the quantum store in some state Q gives the boolean result V (without
loss of generality, suppose that V = 0) with probability p and a quantum store left in
state Q [|x; ... x,) — [0]%|x; ... x,)]. This implies that O, meas x; |7 Q’, V. A similar
argument is used to show that I'; + Uy: com is computable.

For the induction step, we assume that M is constructed out of semi-closed com-
putable terms.
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For example, to show that Ax. M is computable, we assume that M is a semi-closed
computable term. Since Ax. M is of type A = B, we have to use the third clause of the
definition of computability. Using lemma 5.11, we can take a computable semi-closed
N: A and consider (Ax. M) N. Assume that [Q, (Ax. M)N]| = p[Q’, V]l. We have to
show that Q, (Ax. M) N || Q’, V. By the properties of adjunctions and the definition of
[Ax M]| we have

[(% MN] = ([Ax. M], [M])) ; eval
= (A (MDD, [M]) ; eval
= (d, [N1); [M] ; eval
= [MIN/x])-
This implies that [Q, (Ax. M)N]| is the same as [[Q, M[N/X]]], which with probability

p makes Player behave as if he is using [Q’, V]. By induction hypothesis, this implies
that

O, MIN/X] U" Q', V.
Using the operational semantics derivation rules, we get that
Q,(AX.M)N P Q'V,

which is the desired result.

The quantum measurement and unitary operations cases are dealt with in the same
way as in the previous case of gstore variables.

In the case of local preparation, consider that

M =prepywithxin N

is a semi-closed term. Assume that [Q, M] makes Player behave as if he was using the
strategy [Q’, V], with probability p. Since in the definition of [Q, M] Player plays a
preparation move before the first question about the state held by x®Yy in Q, the answer
to this question is given using

IIQ[lxl c XYL Ym) P | xn>|00>]]]

Thus the strategy [Q’, V] make player behave as

[OIIx1...xay1 . ym) o |x1 ... x)[0...0)], M]).

By induction hypothesis, this implies that

Oflxr. .. x 1. ymy = Ix1 ... x)|0...0)], M | Q', V.

Using the operational semantics derivations rules, we get that Q, M |7 Q’, V, which is
the desired result. o

Contexts for QSL are defined similarly as in the case of MCdata: a context with a
hole of type B is a term C[—] with a special free variable “—" of type B, i.e. it is possible
to derive that I', —: B + C[—-]: A. Capture-free substitution of aterm I'  M: B in the
context C[—] is denoted by C[M].
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Definition 5.12. Two semi-closed terms T + My: A and T v+ M,: A are contextually
equivalent if for all quantum stores Q and ground type context C[—]

0.CIM|]F Q'.V & Q.CIM,] |’ Q', V.
This relation is denoted by My ~ M.

Proposition 5.13. (Soundness for QSL) Let M| and M, be two semi-closed QSL terms.
IfIIMl]] = [IMl]], then Ml ~M2_

Proof. Supposethatl' - M;: AandT + M,: A are two semi-closed terms with [M,]] =
[M,]. Take any ground type context C[—] with a hole of type A and ['-quantum store Q.
Suppose that O, C[M,] |}’ Q’, V. By proposition 5.7, we have that for any well-opened
sab € 7 ([Q', VD)

[Q.CIMiIN (b | sa)=p[Q.V](b]|sa).

Using the hypothesis and the substitution lemma and naturality of adjunction, we have
that

[Q.CIM 11 = [Q]; [C[M]]l
= [Q1: Cidyry, [M:1); [CT-111
=[O Cidyry, [M21); [CT-111
= [O]: [CIM]]
=[Q.C[M]].

We thus have that for all well-opened sab € 7 ([Q’, V1)
[Q,CIM N (b ]| sa)=plO,VI(b]sa),
which implies by adequacy that Q, C[M;] P Q', V.

The other implication being proved with a similar argument, we get that M; ~
M. O
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Chapter 6

A-calculus with quantum data

In the quantum store A-calculus presented in the last chapter, quantum states can only
be accessed indirectly through references. We now introduce another quantum A-
calculus in which a quantum state can be represented and manipulated directly in the
language. We want to be able to apply unitary transformations to quantum data, to
prepare quantum states, to tensor and measure them, and to refer to parts of a quantum
state. Since quantum states cannot be duplicated, we must make the A-calculus with
quantum data linear, as in the case of the quantum A-calculus of Selinger and Val-
iron [SV06a]. The denotational semantics presented in this chapter will validate this
choice using a different argument: quantum measurements have side effects, which
forces us to use thread dependent strategies that cannot be duplicated using the dupli-
cating strategy A.

The problems pointed out in section 5.1 force us to be careful when introducing the
gbit tensor operation. Because of this, we also use extended variables in the quantum
data language. While QSL extended variables are used as references to quantum stores,
in this chapter they are used to represent quantum data.

6.1 Syntax

The syntax of the A-calculus with quantum data language (QDL) is that of a classical
simply typed A-calculus with pairing and conditionals, with extra constructs that give
the language enough expressiveness to encode the usual manipulations of quantum data
as can be described with the low level formalism of quantum circuits.

6.1.1 Terms

The terms of QDL are defined recursively as follows:

M,N,P:=x|*|0|1]|p|{(M,N)|fstM |sndM |
MN | Ax.M |ifMthenNelse P |
UM|MN |leth,x = meas; MinN | meas M,
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where b, X and y are extended variables defined as in section 5.2.1, i > 0 is a natu-
ral number, p can be any density matrix and U is a superoperator corresponding to
a unitary transformation U. Most of the syntax consists of standard A-calculus oper-
ations. The term U M is the operation that corresponds to applying a unitary trans-
formation to the state described by the term M. The measurement operation syntax,
let b, x = meas; M in N, means that the gbit i of the term M is measured and thereafter
the measurement result is accessible in N as b and the resulting state is accessible as
x. Note that the variables b and X are bound in N. To measure a single gbit, we use
instead the simpler syntax meas Q. The set of free variables in M is denoted FV(M).

6.1.2 Types
The types of QDL are the following:

A,B = bool | T | gbit* |AX B|A = B.

where n > 0. The type bool is the type of boolean constants, A X B and A = B are
respectively the types of pairs and functions. The type gbit®" is the type of quantum
states on n gbits. The notation gbit®” stands implicitly for the product qbit ® - - - ® gbit;
we use the notation gbit®" ® gbit®” to denote gbit®"*™, although there is no ® type
operation.

The typing rules of QDL are given in table 6.1. We assume that contexts I" contain
no gbit variables and contexts A; contain only gbit variables. This convention will be
used throughout this chapter. Rules involving classical operations are direct adaptation
of the standard typing rules of a typed A-calculus. The rules for quantum constants,
quantum measurements and unitary operations are straightforward. The three tensor
rules allow one to take two terms of type gbit®" and gbit®” and create a term of type
@bit®"*™ _ The distinction between the three cases is due to the fact that known or
unknown gbits must be dealt with differently. If I, A + M: gbit®", M is a known gbit
when it has no dependency on some quantum state variable in A, i.e. if FEV(M)N|A| = 0.
If instead FV(M) N |A| contains only an extended variable X, then the quantum state
represented by M depends on the value of the quantum variable X and is thus unknown.
The typing rules do not allow an unknown quantum state to depend upon more than
one other quantum state.

Example 6.1. The term p ® p has type F p ® p: qbit®>.

The term x ® x is not allowed since extended variables cannot contain duplicate
variables. It follows from this that there is no duplicating function Ax. x®x either. In the
A-calculus with quantum data, duplicating a known state p is possible but duplicating
an unknown state x isn’t.

Note that x: gbit + (x, x): gbit X gbit is not a valid typing judgement either. This is
forbidden by the pairing typing rules: to derive that

x: gbit F (x, x): gbit X gbit,

one must start with the assumption x: gbit - x: gbit and then use the derivation rule
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Table 6.1 QDL typing rules

IAX:ArXx: A AR« T I',A+0: bool I',A+ 1: bool

LA X:A+M: B L'AN+M:A=> B ILAb-N: A
IIA+AxX.M: A= B I A\,A,+ MN: B
F,AIFMliAl F,Azl-MziAz ILA+-M:AXB ILArM:AXB
F,Al,Azl-(Ml,Mz)IAlXAQ r,Al—fStM:A I' ArsndM: B
I,A; + P: bool LAOFM: A IAFN: A _
. M n
TI,A, Ay +if PthenMelse N: A [, A+ p: gbit
[A F Q: gbit®™D I, A, b: bool, X: qbit" v M: A LA+ M: gbit™
I,A, Ay Fleth,x = meas; QinM: A I[,Av+UM: gbit™
[,A+r Q: gbit T,A; v M, : gbit® T,A; v M,: gbit®™

FV(M) N Al =0

I, A+ meas Q: bool [,AL A - My ® M, : gbit®™ ® gbit®”

[, A, %7 gbit® + M, : gbit® T2, Ay, %50 qbit®™ + M, : gbit®™”

FV(M) \ 1A = {xi}
T,A, A, % ®%;: qbit™ @ gbit®™ + M, ® M,: gbit® ® gbit®”

T, A}, X: qbit® + M, : gbit® T, Ay F My: @bit®™  FV(M)\ A = {x1}
T,A, Ay, %: qbit™ + M, ® M, : gbit® ® gbit®™” FV(M>) N Ay =0

x: gbit + x: gbit x: gbit + x: gbit
x: gbit, x: gbit + (x, x): gbit X gbit

This is forbidden because contexts can only refer once to a given variable.

Example 6.2. Quantum teleportation can be implemented in the quantum data A-
calculus. Consider the term teleportation defined in figure 6.1, where the unitary
superoperators U, 5, are the usual correction unitary operations of the teleportation
protocol. Using the type inference rules, we can derive that r teleport: gbit = gbit.

Figure 6.1 QDL Teleportation

teleport:
Ax.leth,,y ® z = meas;cnot'? (H x) ® [Boo]) in
leth,,z’ = meas; y®zin
if b, then
if by then Uy 7’ else Uy, 7/
else
it by then U0 2’ else Uy, 2’
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Example 6.3. Any quantum circuit can be implemented as a QDL term. The input
gbits are represented as a qbit®" variable X. If some ancilla state |¢) is used, X is then
tensored with |p){(¢|. The unitary transformations Uy,..., Uy corresponding to the
quantum gates applied in the circuit are then applied. Finally, measurement operations
are used to measure the gbits #; to i, and return a tuple containing the measurement
results.

lethb),y1 =meas;, Uy ... U1 (x1 Q-+ ® x, ® |p){¢]) in

let by, yx = meas;, yr_1 in
(by,...by)

6.2 Operational semantics

The operational semantics of the A-calculus with quantum data is given as a big-step
probabilistic reduction relation M |}’ V between terms and values. Values are the
terms defined recursively by

VWi=0|1]*|p| X MIV,W)|VeW.
The reduction relation is defined by the rules given in table 6.2.

Example 6.4. Consider the term
M = if (meas |[+){+]) then p; else p, : gbit.
Since meas |+)(+| ||!/? 0, we have that M |!/? p,. Similarly, M |}'/? p,.

Example 6.5. The term teleport p reduces with probability 1 to p.

6.3 Denotational semantics

We now define a denotational semantics for QDL. The first problem to solve is to
find the right arena to model the type gbit®’. We use the arena gbit®" defined in the

same way as qstore, but where the quantum intervention question &, = {8,‘”} uses only
quantum operations

&), SD(C™) - SD(H,),

i.e. all operations must take their input in the state Hilbert space C?" for n gbits. In the
case of the gstore arena, the dimension of the input space of the operations &, could be
any natural number n > 2 since the dimension of the state stored in a quantum store can
vary in the course of a computation. For a given piece of quantum data, this dimension
is fixed.
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Table 6.2 QDL probabilistic reduction rules

M P Ax. M’ N1V M, ||V, M, )7V,
viv MN U7 M[V/%] (My, My) 179 (Vi V)
M [PV, Vo) M PV, V)
fstM |7 V, sndM |7 V,
PJro0 M|V P71 N1V
if Pthen Melse N |71V if Pthen Melse N |71V

QW p  Mb/m3/L w(mlplm)]| U7 v
letb,x = meas; Qin M PV

Pm =1 ([m]'p) ,m=0,1

olp ;
= ! = 1
meas Q upm m P tr ([m] p) » m 0,
M, PV, M, 4V, M P p
M, @M, |11V, @V, UM P Up)

With the arena gbit, we can define the interpretation of the QDL types recursively
as follows:

[bool] =bool  [TI=T  [qbit®] = gbit™"
[A = B] =[A] — [B]  [AxB] =[Al®[B]

Apart from the definition of [[qbit®”]], this definition is similar to the corresponding
definition for QSL. Given a context

IF'=x1:Aq,...,x,0 Ay,

we set [ tobe [A;]®---O[A.l
We now turn to the definition of the interpretation [M] of aterm I' - M: A. The
definition is by induction on the derivation of I' + M : A; it is summarised in table 6.3.
In the base case we must deal with variable and constant terms. For variables, the
interpretation of I, x: A + Xx: A is defined using the projection strategies

ma: [T 0 [A] — [A].

As for QSL, the denotations of the constants 0, 1, and = are the constant strategies. A
quantum state constant p: gbit®" is interpreted as the quantum strategy [p] in qbit®".
We describe the interesting inductive cases. The other cases are interpreted using
the same ideas used for QSL in the last chapter.
The definition of the strategy

[T,A;,A rif Pthen Melse N: A]|
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Table 6.3 QDL denotational semantics

[CAT: Ar%: Al: [TT10TATOIA] —2s [A] [T AF+: TT: [T [A] ——> T

[T,A+0O:bool]l : [I'ToIIAl 0 bool [I,AFr1:bool]: [I']o[A] LI bool

[CAFAZM: A= B]: [TlolAl —2Y o ja] — (8]

eval

[T,A1,Ay - MN: B] - [TTo[A 06 [A] /([[A]] — [[B]) © [A] —— [B]
ry
(Irleo Ao rlefA MICIN
[[F,Al,Az F <M1,M2>Z Al XA2]] .
; [ Tle[-]]
[TTolATo Al —— ([TTola Do (TTe [AD) —————— [Ai 1 0 [A:]
[C,A+fstM: Al : [T] 0 [A] —2s [A] © [B] —2L [A])

[T,A+sndM: B : [T]0 AT —2s a7 0 [B] —2> [B]]

[T,A;, A +if PthenMelse N: A] :

cond(IMILINT)
Mo Al oA bool © ([T © [A;]) ———— = [A]l

vr /[mT "
(ITTo A/ Do TITo[AD o1
[LAFp: gbit™] : [T] 0 [A] —2> qbit®
[T,A1, Ay F leth,x = meas; QinM: A] :

[TTo Al [A:] (ool © qbit™) o (ITT © [A;1) ——> [A]
r A meas;eid
(ITT o [A/ DD o ('] © [A21D ST abit®*!' o ([T] © [A1)
[CAFUM: goie®] : [T 0 [A] 2> gbit® > git”
[T, A+ meas Q: bool] : [T © [A] —2 gbit™ —™%= ool
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LALLM M @ M,;: bit®n® bit®"] :
q q

. [[mi lel[m:]] . .
[Tl e [A 16 [A]l —— (ITT e [A D) @ (IT] © [A]) ———— qbit™ ® qbit™"
[T, AL, Ay, X7 ® %0 gbit®™ ® gbit® + M|, ® M, : gbit®™ ® qbit®"] :
[TT oA 0 [A] © gbit® ® gbit®” gbit®" ® gbit®”
v M1 ® [M,]
(ITT1 o [A 1) © (ITT © [Az]) © gbit®” ® gbit®”
[T, AL, Ay, x: gbit® + My ® M, : qbit®" ® qbit®"] :
[ITolAloe A qbit®” ® gbit®”
' M1 & [M:]

(ITT e [AD) © gbit™ © ([T © [A 1)

differs from the usual definition of conditional strategies used in game semantics be-
cause of the linearity constraint. Assume that

[P1: [TT© [A:l — bool [MT, INT - [T © [A2Q — [A]

are already defined. Using the symmetry strategy associated to © and the duplicating
strategy A, we can define a strategy

ro (Mo Al o [A2DD) — (ITTo [A D o (ITT o [A21D

which reorganizes the input arena. With this strategy, we can define [if P then M else N]|
to be the composition
r; [Pl @ id; cond([M]], [N,

where
cond([M1, INT): bool © (ITT © [A2]) — [[A]l

is defined using a conditional strategy operation defined in general by the following
idea. Given any two arenas A and B and two strategies o, 7: A — B, the strategy

cond(o, 7): (bool ®A) - B

is the strategy that makes Player answer an initial move in B by asking for a Boolean
b in the bool component and then makes Player play in the components A and B using
the strategy o if b = 1 and 7 if b = 0.

The first quantum operation we deal with is unitary transformations. In this case we
assume that the strategy [[F ,AFM: qbit®”]] is already defined. The strategy [U M]| is
defined to be [M]; [U], where [U] is the strategy corresponding to the superoperator
Uu.

For the measurement case, suppose that

(O] : [T1oIA ] — gbit®”™* D and [M] : [T]© [A:] © bool © gbit®™”
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are already defined. We can define
[letb,x = meas; Qin M]|

as the composition
r;([Q1 ©1d); (meas; © id); [M]]

where meas;: gbit®"*! — bool © qbit®" is the strategy described as follows. Let C be
the quantum intervention corresponding to a projective measurement in the canonical
basis and 7 be the identity quantum intervention. If the first move is a question in the
qbit® arena, Player uses the left-hand scheme of figure 6.2 and if the first move is
in the bool arena, then Player uses the right-hand scheme. In these schemes, & ® F
stands for the quantum intervention {&,,, ® F, }(ml’mz). It is important to point out that
in the right-hand scheme, Player must question Opponent two times. Since the first
intervention 7 ® C alters the state, Opponent’s answer to the second question & ® I
depends on the first answer given. This is the only instance in the semantics described
in this chapter where more than one thread is necessary in the gbit®" arena. Because
of the side effects of measurements, we are forced to use thread dependent strategies
to describe quantum states. This is the point where we are forced to assume that gbit
types are linear, since thread dependent strategies cannot be duplicated using the usual
A duplicating strategy. In contrast, previous work on quantum A-calculi justified the
need of the linearity hypothesis by invoking the no-cloning theorem.

Figure 6.2 Strategy for the QDL measurement rules

meas;

gbit®™) — > phool © gbit™ qbit®™) — s hool © qbit®”
& ?
&®C IecC
(m, b) b
m b
9 &
b E T
m
m

There are three tensor cases to deal with. In the first case, we tensor two known
gbits. Suppose that the strategies

[T, AL %1 gbit™ + My : qbit® || and [T, Ay, %0 qbit™ F My: gbit™ |

are already defined, where FV(M;) \ |A;| = 0 for i = 1,2. The strategy [M; ® M] is
defined as the composition r; [M;]] ® [M-], where the strategy [M,]] ® [M-] is de-
fined by the scheme described in figure 6.3. In this scheme, the probability that Player
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answers m to &, after the interactions s = a;...a, and t = by ... by is tr (E,,(0s Q py)).
Note that while we take the tensor product of the two output quantum arenas, we must
take the classical game product of the classical input arenas.

Figure 6.3 Strategy for the first QDL tensor rule

[M, ][ M:]]

(TTeo A o (rlelAD qbit®" ® qbit®”
&
a
a
b
by
m

In the second case, we tensor two gbits each constructed from unknown gbits. This
case is similar to the first one: suppose that [[F, A v M qbit®"]] and [[F, Ay v My: qbit®m]]
are already defined and that FV(M;) N |A;| = {x;}. The strategy [M| ® M,] is defined
to be the composition r © id; [M; ] ® [ M-]], but this time the strategy [M;]] ® [M,]]
must be defined using the scheme of figure 6.4. In this figure ¥ and G, are the two
trace-preserving superoperators used by Player respectively in [M, ] and [M;]].

The third tensor rule is for cases where known and unknown states are tensored. In
this case we have to use a conditional preparation strategy defined using a combination
of schemes used in the first two cases. Assume that [[F, AN qbit®” FM,: qbit®"]] and

[[r, Mk My: qbit®"']] are already defined and that FV(M,) \ |A;| = {x} and FV(M,) N
|Az] = 0. The strategy [M; ® M,] is defined as the composition r; [M;]] ® [M,]
where this time the tensor strategy [M;] ® [M;] is defined with the scheme given in
figure 6.5. Using that scheme, Player determines how to answer the initial question
&, by first playing in the [I'] © [A;,] arena to determine which state ps, s = aj ... a,
to prepare; we assume this state is prepared by a superoperator F,. After this, Player
will start an interaction in [I']] in order to learn how the state represented by the term
M, is built from its input. In this case, we assume that this construction corresponds
to a superoperator G,, where ¢t = b ... b, is the interaction in the [I']] part. The initial
question is then transformed into the question (¥, ® G;) &, in the input arena qbit®”,
and the answer is copied back to the output arena.
This completes the definition of the denotational semantics.

Example 6.6. Consider the two QDL terms

M, = x® (ifbthenp; else py)
M, =ifbthenx ® p; else x ® p,,

109



Figure 6.4 Strategy for the second QDL tensor rule

[rmolah © (rMoltl) © gbit® o gbit®” ——T 1 | bt @ gbit™”
&
a
ay
b
b
E(Fs®Gh)
m
m
Figure 6.5 Strategy for the third QDL tensor rule
[molal) ©  gbit™ o ([0 [A]) —oPE | hite @ qbit™”
&
a
ay
b
by
& (Fs®G)
m
m
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where p; and p, are two one gbit states. Intuitively, both terms produce the state x ® p;
or x ® p, depending on the value of B. We can derive that

x: gbit,b: bool + M;: gbit® gbit, i = 1,2.

Let us compare the associated strategies [M] and [M,]].
In the first case, [M,] is defined as a preparation strategy with typical play

qbit © bool — qbit ® qbit
&

EFp
m

where ¥, is the superoperator that tensors its input with the state pj.

In the second case, [M,] is the strategy in the same arena using which Player will
first query for the boolean value in the bool input arena, then play according to either
[x®p1] or [x ® p2]] conditionally on the given answer. A typical play is thus exactly
the same as in the case of [M ] and thus [M;] = [M:], as can be expected from the
intuitive meaning of both terms.

6.4 Soundness

We now turn to the problem of proving a soundness result for the denotational seman-
tics defined in the last section. First, we need a substitution lemma.

Lemma 6.7. (Substitution for QDL) For any QDL terms I',A1,x: A + M: B and
I',Ay v N: A with x € FV(M), we have that

LA, Ao M[N/X]: B and [M[N/X]]| = r;idO[N];[M].
Proof. This is proven by structural induction on the construction of M. O

The following proposition states that when a term M reduces to some value V with
probability p, the corresponding strategies [ M] and [ V] makes Player play in the same
way with probability p.

Proposition 6.8. If M ||? V, then for all well-opened sab € T ([V]]) we have that
(M| sa)=pLVID] sa).

Proof. By structural induction on the derivation of M |[? V. Most of the proof follows
an argument similar to the QSL case in section 5.3. We skip these to focus on the cases
involving quantum operations.
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For measurement operations, consider first the single gbit case. Suppose that [M]]
behaves as [[p]] with probability p. Assume that meas M reduces to O with probability
ptr(|0)0] p). The strategy [meas M] is the composition [M] ; meas and, by induc-
tion hypothesis, any interaction using this strategy will behave as an interaction using
the strategy [p]; meas. By definition of [p], this strategy behaves as the constant strat-
egy 0 in bool with probability tr (J0)(0| p), and thus [meas M] behaves as [0] with
probability p tr (|0)(0| p).

The general measurement case is similar.

To deal with the tensor operation reduction rule, suppose that the proposition holds
when M; || V; and M, |7 V, and assume that

M@ M, P41V, ®V,.

Since the definition of [[M; ® M,] is in three cases, these must be considered sepa-
rately. In the first case, M and M, are both terms with no free variables of type gbit
appearing in the type context. By definition

(M, ® Mz]| = roid; [M;] ® [M-]
and by the induction hypothesis this will behaves as
(M@ M] =roid;[Vi] (V2]

with probability pg. The other two cases are similar, except that the definition of the
strategy [M;] ® [M:] is different in each case. |

The next result is adequacy, the converse of the previous one. As for classical
A-calculus and QSL, we use a computability predicate to prove adequacy for QDL.
The main difference between the following definition and the usual definition of com-
putability is the use of extended variables. Note that neither the presence of extended
variables or the linearity constraint on gbits have any significant impact on this defini-
tion.

Definition 6.9. A QDL term M is computable if

1. M is closed with M: A and A = bool, T or gbit, and if for all sab € T (b | sa)
we have that [M] (b | sa) = p[[V](b| sa), then M PV,

2. X1:Aq,..., X, Ay - M A and for all computable closed terms
I'tNi: Ay, ...,TEN,: A,
we have that M[N, /X1, ... ,N,/x,] is computable,

3. M is closed with+ M: A = B and for all closed N with+ N: A the term MN is
computable.

Lemma 6.10. All QDL terms are computable.

We need the following lemma which is proved by induction on the construction of
the type A.
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Lemma 6.11. For any type A, there exist a closed term M of type A.

Proof of lemma 6.10. By induction on the construction of M. The part of the proof
involving classical constructs follows the usual pattern as in classical game semantics,
using lemma 6.11 for abstraction as explained in the proof of lemma 5.10, so we focus
here on the quantum operations. Using the definition of computability, we can assume
that the components of M are computable closed terms.

The most interesting case is measurement since it involves an argument specific to
QDL. We begin with the one gbit measurement case. Suppose that M = meas N where
N is a closed computable term of type gbit. Assume that V is a boolean value and that

(M (D] sa)=pIVI(b]|sa)

for all well-opened sab € 7 ([V]).
When Player uses [M]], a typical play is

1 vy gbit — ™= . hool
?
Co
m
m

where C» is the quantum intervention corresponding to a projective measurement in the
canonical basis. Let p be the probability that using [[N]] the answer is 0 and 1 — p the
probability that the answer is 1. Although it is not possible to infer which state p is
used to answer C» using these probabilities, we know that if player was using

p" = ploX0l + (1 = p)I1X1|

instead of p, we would get the same play as above. Since measp’ |}’ 0, we get that
meas p |7 0 as required.

We use a similar argument to deal with the general measurement case. For unitary
operations, the above problem does not occur since the strategy [UM] = [M]; [U]
provides the measurement probabilities for all quantum interventions &,. This allows
one to find, via the Gleason theorem, a state p such that [M] behaves like [p] with
probability p. Using this and the induction hypothesis on M, we get the desired result.

]

Adequacy is a direct corollary of lemma 6.10.

Proposition 6.12. (Adequacy for QDL) Let M be a closed term of type bool, T or
qbit®". If for all well-opened sab € T ([V]) we have that [M] (b | sa) = p[V] (b |
sa), then we have that M |P V.

To give the final result, we need to introduce the necessary concept of contextual
equivalence for QDL. A context C[—] of type B with a hole of type A is a term C[—]
with a special variable “~”" (possibly an extended variable) such that —: A + C[-]: B.
Capture-free substitution of a term N in a context C[—] is denoted C[N].
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Definition 6.13. Two closed terms + My: A and + M, : A are contextually equivalent
(denoted M| ~ M, ) if for every ground-type context C[—] with a hole of type A we have
that

CIM]JPV < C[M,] " V.

The following soundness result follows from proposition 6.8 and adequacy using
the same standard argument used to prove proposition 5.13 in the last chapter.

Proposition 6.14. (Soundness for QDL) Let M, and M, by two closed QDL terms. If
(M1l = [M:], then My ~ M.
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Chapter 7

Conclusion

7.1 Recapitulation

We introduced a notion of quantum arena and of quantum strategy derived from the
concept of probabilistic strategy of Danos and Harmer [DH02] and based on the vision
of quantum knowledge proposed by D’Hondt and Panangaden [DP05] and quantum
consistent history theory. This notion was illustrated by many examples of quantum
strategies that describe quantum states and important quantum operations. To justify
the use of these strategies, a criterion was given to identify the probabilistic strategies
that correspond to quantum states. Since the usual classical game semantics opera-
tions on arenas are insufficient to represent tensor product spaces adequately, we intro-
duced a new tensor operation for quantum arenas. As a last contribution to the topic
of quantum strategies, we gave an overview of the various generalisations of quantum
plays that can be obtained by considering other kinds of quantum measurements than
projective measurements. The two important cases are quantum plays using POVM
measurements and those using intervention operators.

The rest of this thesis was devoted to the use of quantum strategies to analyse three
different quantum programming languages. We first gave a denotational semantics for
a typed variant of the measurement calculus of Danos et al. [DKP07]. We obtained a
soundness result for this semantics.

We then introduced two new higher-order quantum programming languages. While
the syntax of both languages was derived from the work of Selinger and Valiron [SV06a],
two different views of the interaction between quantum and classical parts of a quan-
tum A-calculus were developed. In one case, quantum states are represented as states
of quantum stores on which various commands can be applied. A new syntactic de-
vice, extended variables, was used to allow various gbits of a store to be entangled. In
the other case, quantum states can be used directly in the language as quantum data,
forcing the A-calculus to be linear to avoid duplication of unknown states. In game
semantics of classical languages, this difference between a reference and the data it-
self is reflected in the semantics as the difference between thread dependent and thread
independent strategies. The work presented in this thesis clarifies the impact this has
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in the quantum case: measuring quantum states has side effects which can only be
represented using thread dependent strategies.

The fact that there are two different products (quantum and classical) of quantum
arenas led us to separate the ® type operation of the quantum A-calculus of Selinger
and Valiron into the classical arena product operation and the quantum tensor product
arenas operation.

A denotational semantics using quantum arenas was given for both the quantum
store and the quantum data A-calculi. In both cases the classical segment of the interpre-
tation uses known constructs from game semantics. For the quantum store A-calculus,
new quantum arenas and strategies were required to take into account the fact that the
internal state of a quantum store is affected by unitary transformation, measurements
and preparation commands. For the quantum data A-calculus, gbit variables can only be
used linearly because the semantics requires thread dependent strategies to account for
quantum measurements side effects. We proved soundness results for both languages.

7.2 Discussion

The main goal of this thesis was to present quantum games and strategies as a new
framework to understand the relation between classical and quantum data in quantum
programming languages. The applications we have given show that it is possible to use
this framework to define semantics of various typed quantum programming languages
including higher order languages. It inherits one important general feature of game
semantics: it can be adapted to deal with different kinds of quantum programming
languages constructions. Let us point out some features of quantum strategies that had
to be taken into account. These features played an important role in this thesis, as we
took them as guides for the design of the two A-calculi introduced instead of seeing
them as defects of the model.

I Quantum strategies [p] in [H] are not thread independent. This is pointing out that
quantum strategies behave like classical strategies for constructions with side-effects.
This feature was obviously important for the A-calculus with quantum stores, since
thread dependence is a general feature of stores. It is also important in the case of the
A-calculus with quantum data since it entails that quantum data must be used linearly: a
strategy representing a state p can’t be duplicated using a A strategy as any interaction
with it will change the state it represent.

II' The usual game semantics tensor operation ® cannot produce quantum arenas
where general quantum measurements can be made, thus making it impossible to deal
with entanglement. This forced the introduction of a tensor operation ® which can only
be used on quantum strategies. The syntax of both A-calculi we introduced reflect this:
we used classical pairing and a purely quantum tensor operation. Having two differ-
ent products also has consequences for abstraction because it depends on the existence
of a closed structure, i.e. on the existence of an adjoint to the product. The quantum
tensor product of arenas does not have an adjoint, and this makes it impossible to use
A-abstraction over a gbit variable which is part of a tensor product. There is, thus, no
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such abstraction in the syntax. This can be seen as a consequence of the principle we
adopted in section 3.1.1: all choices are classical, and thus we cannot abstract over part
of a tensor product.

I The quantum tensor product of strategies can be defined for either two strategies
representing known states, or two strategies representing unknown states. To deal with
the case of the tensor product of a known and an unknown state, we used instead a
preparation strategy. These three cases are distinguished in the type system of the A-
calculus with quantum data. This feature of the quantum tensor product suggests that
in quantum languages we must distinguish between the cases where quantum states are
known and those where quantum states are unknown.

IV There is a strategy that allows one to consider locally the components of a state
on a joint space as independent states. This strategy

C: gbit®" ® qbit®”" — qbit*" © qbit®”

is used in the interpretation of the let ... in ... operations of the A-calculus with quan-
tum data. There is no strategy doing the reverse operation that takes independent states
to tensor product states. This is intuitively impossible because there are ways to oper-
ate on the resulting tensor state that cannot be described as separate operation on each
independent gbits.

These features of quantum arenas and strategies have their roots in the approach
taken to define quantum strategies for quantum states. We adopted a point of view
close to that of the quantum consistent histories interpretation of quantum mechanics:
agents can only interact with quantum data through measurements. This determined
the structure of quantum arenas where quantum states can be represented using the
standard approach of game semantics to represent states of systems. We then built
more complex quantum arenas using the usual product and arrow arena operations of
game semantics. As the applications presented in this thesis showed, it is possible to
represent enough important quantum operations in these arenas to be able to construct
denotational semantics for quantum programming languages. The various properties
of quantum strategies representing quantum operations are due to a feature specific to
them. A typical strategy represents a classical operation in the arena A — B as the way
Player uses Opponent’s answers in the input A to give an answer in the output B. In
contrast, in all the examples of quantum strategies given in this thesis, a quantum oper-
ation is represented as the relation between the initial question P, asked by Opponent
with the counter-question $», asked by Player. This constraint explains the last of the
three features listed above.

7.3 Future work

We conclude this thesis with possible developments of the ideas it presents.
While we gave enough results on quantum strategies to be able to define denota-
tional semantics for three quantum languages, there are many questions remaining to
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be answered. A central one is to characterise, using a condition on plays, the quantum
strategies in [H4] — [Hpg] among all probabilistic strategies in that arena. In chapter 3
we defined the quantum strategies as those that send, via composition, quantum states
to quantum states. We would like to identify these strategies directly, since strategies
with that property correspond to superoperators. The link with consistent histories may
prove useful to solve this problem. By contrast, the approach used to define quantum
arenas could be used in consistent history theory to describe processes; as far as the au-
thor is aware, there is no such development in that theory. Note that the characterisation
of the quantum strategies of the form [p] we gave in chapter 3 relies on Gleason’s char-
acterisation of density operators in terms of probabilities assigned to projectors. To get
a similar result for quantum strategies describing quantum operations, we would need
a result characterising a quantum operation & as a function taking quantum measure-
ments on the output to quantum measurements on the input. The author is not aware of
any such result either. As explained in the conclusion of chapter 4, the absence of such
a characterisation explains why we did not give any full abstraction results.

A closely related problem is to understand better the structure of the category
Qstrat of quantum strategies. This category was defined as a first step toward the
construction of a dagger compact-closed category of quantum arenas and strategy. Its
relation with the larger category of probabilistic strategies should be investigated fur-
ther. This categorical investigation should probably take into account the features of
quantum strategies enumerated in the last section. One possible goal for such an inves-
tigation would be to get a factorisation result which would allow one to split a proba-
bilistic strategy into a quantum and a classical strategy. Factorisation results are used
in games semantics as a way to reduce a full abstraction proof for a given language to
a full abstraction result for a simpler language.

Another possible research development is to improve our understanding of the
structure of quantum strategies extended to use intervention operators and the arena
gstore, as described in chapter 3. The author proposed an alternative formalism to de-
scribe strategies which use a structure related to Petri-nets to describe information flow
in classical game semantics [Del05]. This information flow framework can be adapted
to the use of quantum interventions.

Finally, the concepts of quantum arena and strategy presented in this thesis could
be used to analyse quantum protocols used in quantum information and cryptogra-
phy theory. Quite often these protocols are already presented informally as games
and furthermore some work has been done to use game semantics tools in classical
cryptography [Jiir05]. The relation between our approach and the results mentioned
on non-locality without entanglement — results that have antecedents in the literature
on quantum key distribution — is another indication that the quantitative approach of
quantum information theory could be used to analyse quantum strategies.
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